
University of Connecticut
CSE 4302: Computer Architecture

Fall 2022

Programming Assignment 1:
Non-pipelined Simulator

Due October 3, 2022 (Monday) @ 11:59 PM on HuskyCT

Introduction

In this programming assignment, you will build a non-pipelined simulator implementing the MIPS-based
riscy-uconn Instruction Set Architecture (ISA).

First, ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new pa1 directory in the repository root that contains the materials for this programming
assignment. The following is a brief description of the relevant materials:

src/ Simulator source code

unittests/ Simulator unit tests (test programs)

README.md Simulator and unit test build instructions

There are several source code files in the src directory, but you will only modify sim_stages.c for this
programming assignment; you may not modify any other files in this directory.

The objective of this programming assignment is to modify sim_stages.c to implement a fully functional
5-stage non-pipelined (5 cycles per instruction) CPU simulator for the riscy-uconn ISA described in this
document. The following sections provide a detailed description of the simulator implementation and riscy-
uconn ISA as well as other helpful information.

To receive full credit for this assignment, your simulator implementation must be fully functional and correct
for all 11 unit tests in the unittests directory. Instructions for assembling and running the unit tests can
be found in README.md. You are encouraged to write and test your own unit tests (see section 5), but they
will not contribute to your grade.

When you have completed the programming assignment, submit your sim_stages.c file via HuskyCT by
the posted deadline. To receive credit for this assignment, you must also schedule a 10–15 minute
code review meeting with the TA. You have up until 2 weeks after the HuskyCT deadline to
complete the code review. These review meetings will be held independently from office hours,
and you will hear more about scheduling appointments as the due date approaches.

The remaining sections in this document are as follows:

• Section 1 describes the simulator structure.

• Section 2 describes the riscy-uconn ISA that must be implemented for this programming assignment.

• Section 3 describes the riscy-uconn assembler. This section is most relevant to those writing their own
riscy-uconn assembly programs (such as unit tests).

• Section 4 provides helpful debugging tips.

• Section 5 describes the procedure of implementing your own unit tests written in assembly code.

1

1 Simulator Structure

The simulator source code is located in the src directory. sim_core.c contains the simulator initialization
functions and the main simulation loop as well as the machine’s registers and memory. sim_stages.c con-
tains the functions corresponding to the individual CPU stages that you will implement for this programming
assignment. You may only modify sim_stages.c.

sim_core.c contains the simulator’s entry point main(), initialization function initialize(), main simu-
lation loop process_instructions(), registers, and memory.

main() simply invokes the initialization function and main simulation loop, and prints state information
(committed instructions, simulated cycles, register contents, memory contents, etc.) after the simulation
terminates.

initialize() clears the machine’s registers and memory, and loads the assembled .out file (e.g., nop.out,
beq_test1.out, etc.) into the machine’s memory beginning with the .text (code) section. Each row
(instruction) in the .out file is read one by one and loaded into memory starting at address 0. The row
containing 11111111111111111111111111111111 indicates the end of the code section, and is not loaded
into memory. The remaining rows contain the data section and are loaded into memory starting at address
2,048.

process_instructions() contains the main simulation loop responsible for executing instructions. The
simulation loop invokes the functions corresponding to the 5 CPU stages (fetch, decode, execute, memory,
and writeback) and handles the passing of state information between stages. The simulation loop also checks
for the simulation termination condition: that is, when an instruction has written a 1 to the $0 register,
such as in addi $0, $0, 1. Do note that the termination condition will not trigger until you
properly implement the CPU stages!

The implementations for the CPU stages (fetch(), decode(), execute(), memory_stage(), and
writeback()) are in sim_stages.c. The fetch() function is provided to you, and you are not allowed
to modify it. fetch() returns the instruction from memory address PC/4 and forwards it to the decode()
function. The output of decode() is then forwarded to execute(), and so on and so forth. You will imple-
ment the decode(), execute(), memory_stage(), and writeback() functions for this assignment.
The implementation details of every instruction for each stage is provided in the following section.

State information is passed between CPU stages using a State structure. The State structures contains
dynamic information about each instruction. You must ensure the State structure is correctly
populated in each stage. The definition of the State structure can be found in sim_core.h, and is
described in Figure 1.1.

sim_stages.c also provides the advance_pc() function. You may not modify it, but you are free to use it
in your implementations.

The machine’s thirty two 32-bit registers are stored in the registers[] array. Register indices and their
corresponding names are specified in the following section. The machine’s memory is stored in the memory[]
array. Each element of memory[] corresponds to a single word (4 bytes, or 32-bits). More details regarding
the memory model are provided in the following section.

2

Struct
Member Description

inst fetched instruction
opcode opcode field
func function field
rs rs register specifier
rt rt register specifier
rd rd register specifier
sa shift amount (shamt)
imm immediate value
mem_addr memory address for LW/SW instruction
mem_out memory output
jmp_out_31 return address for JAL instruction
br_addr target address for BEQ/BNE instruction
alu_in1 first ALU operand
alu_in2 second ALU operand
alu_out ALU output

Figure 1.1: Fields of the State struct. The fields contain information about the decoded
instruction, ALU operands, and other (micro)architectural state.

2 The riscy-uconn Instruction Set Architecture

2.1 Memory and Execution Model

Memory

riscy-uconn memory is partitioned into instructions and data, and its total size is limited to 16,384 addresses.
A word (4 bytes, or 32-bits) is stored at each memory address, leading to a total memory capacity of 65,538
bytes. The machine only supports word addressable memory.

Instructions reside in the first 2,048 locations of memory, starting from address 0. Each instruction is one
word. A total of 2,048 instructions (8,192 bytes) can be stored in memory. Each instruction word is read
from right to left.

Data resides in addresses 2,048 through 16,383. Each address contains a single word of data.

Execution

The machine’s program counter register (PC) initially points at address 0, and addresses the first instruction
word (4 bytes). The next instruction word is stored at address 1, and so on and so forth. The address of
the instruction memory is always computed by dividing PC by 4. For example, if the PC is calculated to
be 32, the memory address containing the corresponding instruction word is calculated as 32/4 = 8. Most
instructions increment the program counter by 4 bytes. However, control flow instructions, such as BNE,
BEQ, J, JAL and JR, may modify the PC to a non-sequential instruction address. Make sure to pay special
attention to where control-flow instructions resolve.

2.2 Registers
The machine implements a MIPS-like ISA with 32 registers, where each register is 32-bits (or one word).
These registers are named by the ISA as $zero, $at, $v0-1, $a0-a3, $t0-t9, $s0-s7, $k0-k1, $gp, $sp,
$fp, and $ra. The $zero register normally contains a value of 0, but can be set to 1 to trigger program
termination. The mapping from register indices (0–31) to register names can be found in register_map.c.

3

2.3 Instructions
The riscy-uconn instruction format is similar to MIPS. A 32-bit instruction is broken down into three formats:
R-Type (Figure 2.1), I-Type (Figure 2.2), and J-Type (Figure 2.3).

OP RS RT RD SHAMT FUNC
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

Figure 2.1: R-Type instruction format

OP RS RT IMM
Bit 31 26 25 21 20 16 15 Bit 0

Figure 2.2: I-Type instruction format

OP ADDR
Bit 31 26 25 Bit 0

Figure 2.3: J-Type instruction format

The 6-bit OP and FUNC fields are used to differentiate between instruction types. The 5-bit RS, RT and RD
fields encode the indices of the source and/or destination registers used by several instruction. The specific
values of these fields for an instruction are referred to as $s, $t, and $d in the following sections. The 6-bit
SHAMT field encodes the shift amount for the shift instructions SRL and SLL. The 16-bit IMM field encodes
the immediate value used by I-Type instructions. Finally, the 26-bit ADDR field encodes the program counter
address for J-Type instructions (unconditional jumps).

The instructions supported by the riscy-uconn machine are specified in instruction_map.h. You are
expected to modify sim_stages.c to support all of the instructions identified in this file.

The implementation details of each instruction for each CPU stage are specified in the following sections.

2.3.1 R-Type Instructions

ADD

Full Name: Addition
Description: Add the contents of two registers and store the result in a register.
Assembler Syntax: add $d, $s, $t
Operation: $d = $s + $t
Decode Stage: Extract 6-bit OP and FUNC fields to identify this operation. Extract 5-bit RS, RT, and

RD register specifiers. registers[RS] and registers[RT] are read as the two ALU
operands. The PC is advanced by 4 bytes using the advance_pc(4) function call.

Execute Stage: The two ALU operands are added using the + operator to compute the output value.
Memory Stage: Nothing is done for this instruction.
Writeback Stage: registers[RD] is updated with the output value.
Encoding:

000000 sssss ttttt ddddd 00000 100000
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

4

SUB

Full Name: Subtraction
Description: Subtract the contents of two registers and store the result in a register.
Assembler Syntax: sub $d, $s, $t
Operation: $d = $s − $t
Implementation is the same as ADD except that the − operator is used to compute the output value in the
execute stage.
Encoding:

000000 sssss ttttt ddddd 00000 100001
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

AND

Full Name: Bitwise AND
Description: Bitwise AND the contents of two registers and store the result in a register.
Assembler Syntax: and $d, $s, $t
Operation: $d = $s & $t
Implementation is the same as ADD except that the & operator is used to compute the output value in the
execute stage.
Encoding:

000000 sssss ttttt ddddd 00000 100100
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

OR

Full Name: Bitwise OR
Description: Bitwise OR the contents of two registers and store the result in a register.
Assembler Syntax: or $d, $s, $t
Operation: $d = $s | $t
Implementation is the same as ADD except that the | operator is used to compute the output value in the
execute stage.
Encoding:

000000 sssss ttttt ddddd 00000 100101
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

5

SLL

Full Name: Shift Left Logical
Description: Shift the contents of a register left by the shift amount and store the result in a register.

Zeroes are shifted in.
Assembler Syntax: sll $d, $t, h
Operation: $d = $t << h
Implementation is the same as ADD except that the 5-bit SHAMT field is extracted in the decode stage, and
the output value is computed by shifting the contents of the RT register left by SHAMT using the << operator
in the execute stage.
Encoding:

000000 00000 ttttt ddddd hhhhh 000000
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

NOTE: The encoding for a NOP (no operation, or an instruction that does nothing) represents the instruc-
tion SLL $0, $0, 0, which has no side effects on the register and memory state of the machine.

SRL

Full Name: Shift Right Logical
Description: Shift the contents of a register right by the shift amount and store the result in a

register. Zeroes are shifted in.
Assembler Syntax: srl $d, $t, h
Operation: $d = $t >> h
Implementation is the same as SRL except that the output value is computed by shifting the contents of the
RT register right by SHAMT using the >> operator in the execute stage.
Encoding:

000000 00000 ttttt ddddd hhhhh 000010
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

SLT

Full Name: Set on Less Than
Description: If $s is less than $t, $d is set to one. $d is set to zero otherwise.
Assembler Syntax: slt $d, $s, $t
Operation: if $s < $t, then $d = 1, else $d = 0
Implementation is the same as ADD except that an if-else check is used to compare the contents of the RS
register and the RT register using the < operator to compute the output value in the execute stage.
Encoding:

000000 sssss ttttt ddddd 00000 101010
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

6

JR

Full Name: Jump Register
Description: Jump unconditionally to the address stored in a register. Resolves in the decode stage.
Assembler Syntax: jr $s
Operation: PC = $s
Decode Stage: Extract 6-bit OP and FUNC fields to identify this operation. Extract 5-bit RS register

specifier. registers[RS] is read to determine the jump address. The PC is set directly
to registers[RS].

Execute Stage: Nothing is done for this instruction.
Memory Stage: Nothing is done for this instruction.
Writeback Stage: Nothing is done for this instruction.
Encoding:

000000 sssss 00000 00000 00000 001000
Bit 31 26 25 21 20 16 15 11 10 6 5 Bit 0

Note: jr is generally used in combination with jal to call and return from a procedure call.

2.3.2 I-Type Instructions

LW

Full Name: Load Word
Description: A word is loaded into a register from the specified memory address.
Assembler Syntax: lw $t, offset($s)

Operation: mem_addr = $s + offset
$t = memory[mem_addr]

Decode Stage: Extract 6-bit OP field to identify this operation. Extract 5-bit RS and RT register
specifiers. registers[RS] is read to determine the base for the address calculation.
Extract 16-bit IMM field to determine the offset for address calculation. mem_flag is
set for later stages. The PC is advanced by 4 bytes using the advance_pc(4) function
call.

Execute Stage: The memory address is calculated using the + operator and stored in mem_addr. The
address is calculated by sign-extending the 16-bit offset to the register length (32-bits),
and then adding registers[RS] to the sign-extended offset.

Memory Stage: mem_out is set to memory[mem_addr].
Writeback Stage: mem_out is stored in registers[RT].
Encoding:

100011 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

7

SW

Full Name: Store Word
Description: The contents of a register is stored at the specified memory address.
Assembler Syntax: sw $t, offset($s)

Operation: mem_addr = $s + offset
memory[mem_addr] = $t

Decode Stage: Extract 6-bit OP field to identify this operation. Extract 5-bit RS and RT register
specifiers. registers[RS] is read to determine the base for the address calculation.
Extract 16-bit IMM field to determine the offset for address calculation. mem_flag is set
for later stages. mem_out is set to registers[RT] to propagate the value to be stored
to memory. The PC is advanced by 4 bytes using the advance_pc(4) function call.

Execute Stage: The memory address is calculated using the + operator and stored in mem_addr. The
address is calculated by sign-extending the 16-bit offset to the register length (32-bits),
and then adding registers[RS] to the sign-extended offset.

Memory Stage: mem_out is written to memory[mem_addr].
Writeback Stage: Nothing is done for this instruction.
Encoding:

101011 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

ANDI

Full Name: Bitwise AND Immediate
Description: Bitwise AND the contents of a register with a sign-extended immediate value and store

the result in a register.
Assembler Syntax: andi $t, $s, imm
Operation: $t = $s & imm
Decode Stage: Extract 6-bit OP field to identify this operation. Extract 5-bit RS and RT register

specifiers. Extract 16-bit IMM field. registers[RS] is read as the first ALU operand.
The second ALU operand is calculated by sign-extending the IMM field to the register
length (32-bits). The PC is advanced by 4 bytes using the advance_pc(4) function call.

Execute Stage: The output value is computed as the bitwse AND of the two operands using the &
operator.

Memory Stage: Nothing is done for this instruction.
Writeback Stage: registers[RT] is updated with the output value.
Encoding:

001100 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

8

ADDI

Full Name: Addition Immediate
Description: Add the contents of a register to a sign-extended immediate value and store the result

in a register.
Assembler Syntax: addi $t, $s, imm
Operation: $t = $s + imm
Implementation is the same as ANDI except that the + operator is used to compute the output value in the
execute stage.
Encoding:

001000 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

ORI

Full Name: Bitwise OR Immediate
Description: Bitwise OR the contents of a register with a sign-extended immediate value and store

the result in a register.
Assembler Syntax: ori $t, $s, imm
Operation: $t = $s | imm
Implementation is the same as ANDI except that the | operator is used to compute the output value in the
execute stage.
Encoding:

001101 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

SLTI

Full Name: Set on Less Than Immediate
Description: If $s is less than sign-extended immediate value, $t is set to one. $t is set to zero

otherwise.
Assembler Syntax: slti $t, $s, imm
Operation: if $s < imm, then $t = 1, else $t = 0
Implementation is the same as ANDI except that an if-else check is used to compare the contents of the RS
register and the sign-extended IMM field using the < operator to compute the output value in the execute
stage.
Encoding:

001010 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

9

LUI

Full Name: Load Upper Immediate
Description: The immediate value is shifted left by 16 bits and stored in a register. The lower 16

bits are cleared.
Assembler Syntax: lui $t, imm
Operation: $t = imm << 16
Decode Stage: Extract 6-bit OP field to identify this operation. Extract 5-bit RT register specifier.

Extract 16-bit IMM field. The PC is advanced by 4 bytes using the advance_pc(4)
function call.

Execute Stage: The 16-bit IMM value is shifted left by 16 bits to form a 32-bit output value whose lower
16 bits are cleared.

Memory Stage: Nothing is done for this instruction.
Writeback Stage: registers[RT] is updated with the output value.
Encoding:

001111 00000 ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

BEQ

Full Name: Branch on Equal
Description: Branches if the contents of two registers are equal. Resolves in the execute stage.
Assembler Syntax: beq $s, $t, offset
Operation: if $s == $t, then pc = pc + 4 + (offset); else pc = advance_pc(4)
Decode Stage: Extract 6-bit OP field to identify this operation. Extract 5-bit RS and RT register

specifiers. registers[RS] and registers[RT] are read as the two ALU operands.
Extract 16-bit IMM field. First, br_addr is set to PC+4+(sign-extended IMM). Then,
the PC is advanced by 4 bytes using the advance_pc(4) function call ("branch not
taken" predicted).

Execute Stage: The two ALU operands are compared to determine if the branch will be taken or not.
If the branch is taken (i.e., the two ALU operands are equal), then the PC is set to
br_addr. Otherwise, nothing is done here.

Memory Stage: Nothing is done for this instruction.
Writeback Stage: Nothing is done for this instruction.
Encoding:

000100 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

Note: The 16-bit offset in this instruction is calculated by the assembler using the difference between the
32-bit address of the instruction following the BEQ (address of PC+4 due to MIPS semantics), and the
address of the label. For example, if a program wants to loop back seven instructions from BEQ, then the
offset will be stored as 0xffffffe0 or -32. The branch address will then be calculated as PC+4-32 or PC-28,
which will allow the program to loop back seven instructions. (refer to fetch(), where a PC/4 is used as the
index for instruction memory). Similarly, if the program wants to loop forward seven instructions then the
offset will be stored as 0x18 or 24. When the BEQ tests positive for $s == $t, the branch address will be
calculated as PC+4+24 or PC+28, which will allow the program to loop forward seven instructions.

10

BNE

Full Name: Branch on Not Equal
Description: Branches if the contents of two registers are not equal. Resolves in the execute stage.
Assembler Syntax: bne $s, $t, offset
Operation: if $s != $t, then pc = pc + 4 + (offset); else pc = advance_pc(4)
Implementation is the same as BEQ except that the branch condition tests for non-equality in the execute
stage.
Encoding:

000101 sssss ttttt iiiiiiiiiiiiiii
Bit 31 26 25 21 20 16 15 Bit 0

2.3.3 J-Type Instructions

J

Full Name: Jump
Description: Jumps to the calculated address. Resolves in the decode stage.
Assembler Syntax: j target
Operation: PC = 26-bit target address appended with six upper zero bits
Decode Stage: Extract 6-bit OP field to identify this operation. The PC is set to the lower 26 bits of

the instruction. The remaining bits are cleared.
Execute Stage: Nothing is done for this instruction.
Memory Stage: Nothing is done for this instruction.
Writeback Stage: Nothing is done for this instruction.
Encoding:

000010 iiiiiiiiiiiiiiiiiiiiiiiiii
Bit 31 26 25 Bit 0

Note: The target address will never use more than 11 lower bits since the instruction memory has a limit
of 2,048 instructions.

JAL

Full Name: Jump and Link
Description: Jumps to the calculated address, and stores the return address in register $31 ($ra).

Resolves in the decode stage.
Assembler Syntax: jal target

Operation: $31 = PC + 4
PC = 26-bit target address appended with six upper zero bits

Decode Stage: Extract 6-bit OP field to identify this operation. PC+4 is stored in jmp_out_31. The PC
is set to the lower 26 bits of the instruction. The remaining bits are cleared.

Execute Stage: Nothing is done for this instruction.
Memory Stage: Nothing is done for this instruction.
Writeback Stage: registers[31] is set to jmp_out_31.
Encoding:

000011 iiiiiiiiiiiiiiiiiiiiiiiiii
Bit 31 26 25 Bit 0

11

3 The riscy-uconn Assembler

The riscy-uconn assembler is provided to you and will not be modified in this course. However, you will
need to compile it by following the build instructions in the assembler’s README.md (this was done in PA0).
Instructions for using the assembler are also available in the README.md file.

3.1 Assembler Labels
The assembler converts instructions to machine code. The assembler directives .text and .data direct the
assembler to the start of instruction and data memory respectively. For example, instructions following
.text are converted into 32-bit machine code starting at address 0. The .data assembler directive identifies
the start of data memory. Each data word (defined with the .word) following the directive will be loaded
into memory starting at address 2,048. For example, the third word after .data will have a memory address
of 2,050.

4 Debugging

You have several options for debugging your simulator implementation.

printf statements can be added anywhere in sim_stages.c so long as they are properly gated by the
debug flag variable at the top of the file. util.c provides some helpful debugging functions that output the
register (rdump()) and memory (mdump()) contents. Several of these debugging functions are used in the
core simulator implementation by default. You may use these functions so long as they are properly gated
by the debug flag.

A facility called pipe trace is added to the simulator to support visualization of instruction processing across
cycles. The file pipe_trace.txt will be created whenever the simulator is executed. The pipe_trace
flag variable in sim_stages.c toggles whether pipe tracing is enabled or not. You may insert debugging
information into the pipe trace file so long as it is properly gated with the debug flag. Refer to sim_core.c
for examples of writing to the pipe trace.

Finally, you may use the GDB debugger. You can invoke the simulator with a specified unit test under GDB
with the following shell command:

$ gdb ./simulator unit_test.out

GDB is a complex tool with powerful functionality, but a complete guide on using it is beyond the scope
of this course. A guide covering GDB functionality relevant to this course can be found on the following
webpage:

https://condor.depaul.edu/glancast/373class/docs/gdb.html

5 Unit Tests

In addition to the provided test cases within the unittests directory, you are also encouraged to create your
own unit tests. Like those already created for you, the file extention is .asm and is assembled in the same
way as the others. You should refer to section 3 to learn about what the different directives mean, and use
existing unit tests as a sample to guide you. When you are doing your own debugging, you can use custom
tests to try and focus on certain functionalities. Additionally, make sure that your unit tests terminate if
using control flow instructions, and that your unit test is inside the unittests directory.

When trying to assemble your test, you must ensure that the assembly file is in the unix format. To do so, a
tool called dos2unix should be used, as files in the DOS format will give you segmentation faults upon using
the assembler. The tool can be installed with the following command:

12

https://condor.depaul.edu/glancast/373class/docs/gdb.html

$ sudo apt install dos2unix

after which, you convert the user-made test with the following command:

$ dos2unix my_test.asm

where my_test is whatever you named your file.

After this step, you should be able to run the assembler just like the other unit tests (refer to README.md)
to produce the corresponding .out file.

13

	Introduction
	1 Simulator Structure
	2 The riscy-uconn Instruction Set Architecture
	2.1 Memory and Execution Model
	2.2 Registers
	2.3 Instructions
	2.3.1 R-Type Instructions
	2.3.2 I-Type Instructions
	2.3.3 J-Type Instructions

	3 The riscy-uconn Assembler
	3.1 Assembler Labels

	4 Debugging
	5 Unit Tests

