
University of Connecticut
CSE 4302: Computer Architecture

Fall 2022

Programming Assignment 2:
5-Stage Pipelined Simulator

Due November 4, 2022 (Friday) @ 11:59 PM on HuskyCT

Introduction

In this programming assignment, you will build a 5-stage pipelined simulator implementing the MIPS-based
riscy-uconn ISA.

First, ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new pa2 directory in the repository root that contains the materials for this programming
assignment. The directory and file structure of pa2 is the same as pa1. As before, you may only modify
sim_stages.c.

The objective of this programming assignment is to modify sim_stages.c to implement a fully functional
5-stage pipelined CPU simulator for the riscy-uconn ISA. The necessary modifications to your non-pipelined
implementation are described in the subsequent sections of this document.

To receive full credit for this assignment, your simulator implementation must be fully functional and correct
both with and without forwarding for all 10 unit tests in the unittests directory.

Once you have completed this programming assignment, submit your sim_stages.c file via HuskyCT by
the posted deadline. To receive credit for this assignment, you must also schedule a 10–15 minute
code review meeting with the TA. You have up until 2 weeks after the HuskyCT deadline to
complete the code review.

1

1 5-Stage Pipelined Simulator

The objective of this programming assignment is to extend the non-pipelined simulator implementation of
PA1 into a fully pipelined implementation that supports forwarding.

1.1 Simulator Structure
The simulator structure is mostly the same as the non-pipelined simulator in PA1 with the following differ-
ences:

1. Instead of executing each CPU stage in subsequent cycles, the simulator now executes each stage in
the same cycle like a typical pipelined machine. The machine state is now updated in two phases.

In the first phase, the writeback(), memory_stage(), execute(), decode(), and fetch() functions
are invoked in this order to evaluate the corresponding stage for each in-flight instruction. The input
of each pipeline stage is the current state, and the output of each pipeline stage is the desired state for
the next cycle. The next cycle state for each pipeline stage is stored in the corresponding *_n variables
found in the process_instructions() function.

The second phase is responsible for actually advancing the pipeline and moving the machine’s current
state to the next state. To do this, the global cycle counter is incremented and the current pipeline
state for each stage is set to the next cycle state evaluated in the first phase.

2. Pipeline-related control variables have been added to sim_core.h and listed in Figure 1. The subse-
quent sections detail when and how to use these new control variables.

Pipeline
Control Variables

forwarding_enabled
pipe_stall
j_taken
br_mispredicted
lw_in_exe
we_exe, ws_exe, dout_exe
we_mem, ws_mem, dout_mem
we_wb, ws_wb, dout_wb

Figure 1: Pipeline-related control variables.

1.2 Forwarding
The simulator executable now accepts a program argument that controls whether forwarding is enabled or
not:

$./simulator OUT_FILE FORWARDING_ENABLED

where OUT_FILE is an assembled riscy-uconn program and FORWARDING_ENABLED is either 0 or 1 to indicate
that forwarding is disabled or enabled respectively. The forwarding enabled status is visible in the
sim_stages.c file through the forwarding_enabled variable declared in sim_core.h.

When forwarding is enabled, the machine will enable all forwarding paths from the execute, memory, and
write-back stages to the decode stage. When forwarding is not enabled, the machine will stall when a hazard
is detected.

2

1.3 Modifications
The following sections describe the required modifications for each stage of the simulator. Each stage should
use your PA1 implementation as its starting point. It is assumed that your PA1 implementation is correct.

1.3.1 Fetch Stage

Every cycle, the fetch_in argument of the fetch stage is set to the fetch output of the previous cycle by the
simulator core. Consequently, this variable is used to hold the fetch output when the pipeline is stalled. The
global variable pipe_stall is used to determine when to hold fetch output. The fetch stage re-executes the
current instruction when the decode stage asserts (sets to 1) the pipeline stall condition.

The fetch stage must also inject a NOP into the pipeline if the control flow changes. The global variables
j_taken and br_mispredicted are used to determine when to return a NOP, or 0x00000000. The decode
stage asserts j_taken when an unconditional branch instruction changes the program control flow. Similarly,
the execute stage asserts br_mispredicted when a conditional branch is taken.

Finally, when the pipeline is not stalled or standard program control flow is not changed, the fetch stage
performs the instruction memory lookup using the current PC (i.e., PC/4 as address) like in the non-pipelined
simulator.

1.3.2 Decode Stage

The decode stage must first check if a BNE or BEQ instruction in the execute stage resolved to "branch taken."
The br_mispredicted flag is set whenever this occurs, since the current pipeline always predicts PC+4 for
conditional branches in decode. If a "branch taken" is detected, then the decode stage must inject a NOP
into the pipeline. If not, decode proceeds.

There are two local variables in the decode function, rs_enabled and rt_enabled, that are asserted when
the decoded instruction reads the first and/or second register operand respectively. Explicitly, rs_enabled
is asserted when the decoded instruction reads the the first register operand (RS) and rt_enabled is asserted
when the decoded instruction reads the second register operand (RT). Note: be careful when asserting these
variables when register $0 ($zero) is read by an instruction; since register $0 should never actually be written
to during normal program operation, any data dependencies on this register should be ignored.

The decode function must also perform the pipeline interlock checks. These checks must use the global
pipeline control variables we_exe, ws_exe, we_mem, ws_mem, we_wb, and ws_wb to determine if the decoded
instruction is dependent on a pending register write-back in a later stage. The write enable signals (we_*)
are set when the instruction in the corresponding stage writes to a register, and the write select signals
(ws_*) contain the register index of the register to be written to in that stage.

Following the interlock checks, the decode stage must determine whether to (i) forward data from the execute,
memory or write-back stage if forwarding is enabled, or (ii) stall the pipeline by asserting the pipe_stall
signal if forwarding is not enabled. If forwarding is enabled, the decode stage should use the forwarded
data from the appropriate stage. dout_exe, dout_mem, or dout_wb contain the forwarded data for the
corresponding stage. Note: a load (LW) instruction in the execute stage does not have dependent data to
forward to the decode stage. Thus, the decode must assert pipe_stall when lw_in_exe is asserted and the
corresponding dependency is detected.

When pipe_stall is asserted, the decode stage must override the current instruction and inject a NOP.
Moreover, the decode stage must return the modified structure without modifying the program counter so
that the fetch stage unit re-fetches the same instruction in the next cycle.

If no data dependencies are detected (pipe_stall is not asserted), the decode stage must perform the
necessary program counter update logic like in PA1. Note: the pc variable should no longer be written to
directly and the pc_n variable should be used instead; this change is already reflected in the advance_pc()
function. In addition, j_taken must be asserted for the JR, J, and JAL instructions.

3

For BEQ and BNE instructions, PC+4 is predicted for the next instruction address. Similar to PA1,
br_addr should be set to PC+(sign-extended IMM) and the PC is advanced by 4 bytes with advance_pc(4)
function.

1.3.3 Execute Stage

we_exe must be asserted for instructions that will update the register file. When this is the case, ws_exe
must be set to the the register specifier that will be written to. When appropriate, dout_exe must be set to
the ALU output value that may be forwarded to the decode stage.

For BNE and BEQ instructions, if the branch is taken, then pc_n is set to br_addr and the br_mispredicted
flag is set to indicate that earlier stages need to be flushed. Otherwise, nothing is done for these instructions.

If a load instruction is being executed, lw_in_exe must be asserted. This ensures that the decode stage can
appropriately stall the instruction dependent on this load instruction when forwarding is enabled.

1.3.4 Memory Stage

we_mem must be asserted for instructions that will update the register file. When this is the case, ws_mem
must be set to the the register specifier that will be written to. When appropriate, dout_mem must be set to
the output that may be forwarded to the decode stage.

1.3.5 Write-back Stage

we_wb must be asserted for instructions that will update the register file. When this is the case, ws_wb must
be set to the the register specifier that will be written to. When appropriate, dout_wb must be set to the
output that may be forwarded to the decode stage.

4

	Introduction
	1 5-Stage Pipelined Simulator
	1.1 Simulator Structure
	1.2 Forwarding
	1.3 Modifications
	1.3.1 Fetch Stage
	1.3.2 Decode Stage
	1.3.3 Execute Stage
	1.3.4 Memory Stage
	1.3.5 Write-back Stage

