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Introduction

In this programming assignment, you will add dynamic branch prediction and a set associative data cache
to the 5-stage pipelined riscy-uconn simulator.

First, ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new pa3 directory in the repository root that contains the materials for this programming
assignment. The directory and file structure of pa3 is the same as pa2. As before, you may only modify
sim_stages.c.

To receive full credit for this assignment, your simulator implementation must be fully functional and correct
(i) with and without forwarding, (ii) with and without the data cache, and (iii) with and
without dynamic branch prediction for all the unit tests in the PA3 unittests directory as well as for
the unit tests of all previous assignments.

Although only a subsest of the above may be used for grading, the ability to enable and disable certain
features should aid debugging, allow you to periodically test the code, and isolate parts as needed.

Once you have completed this programming assignment, submit your sim_stages.c file via HuskyCT by
the posted deadline. Note that unlike PA1 and PA2, an in person code review is not necessary
to receive credit for PA3. Only a submission of your file is needed.



1 5-Stage Pipelined Simulator with Dynamic Branch Prediction

and Data Cache

The objective of this programming assignment is to extend the 5-stage pipelined simulator implementation of
PA2 with (i) a BTB and direction predictor for BEQ and BNE instructions and (ii) A two-way set associative
data cache with multi-cycle memory operations.

1.1

Simulator Structure

The simulator structure is mostly the same as the pipelined simulator of PA2 with the following differences:

1.

When instructions are fetched from memory, they are now stored in a State structure, like the other
stages. The arguments and return values of the fetch() and decode() functions have been updated
accordingly. The only fields set in the fetch stage are inst and the new inst_addr field (described
below). All other fields are set after fetch (as with PA1 and PA2).

The State structure has the new field inst_addr. This field will be set to the memory address of the
instruction in the fetch stage (the pc value that fetches the instruction from memory). In the following
stages, instructions must use this new field instead of pc directly if needed for calculating branch /jump
addresses.

Multi-cycle operation control variables for the data cache have been added to sim_core.h and are
listed in Figure[I] The subsequent sections detail when and how to use these new control variables.

Multi-cycle Memory
Control Variables
dmem_access_cycles (read-only)

dmem_busy
dmem_cycles

Figure 1: Multi-cycle operation control variables.

. An incomplete single-cycle data cache implementation has been added to the simulator. The data

cache may be enabled or disabled based on the new program argument described in the next section.
More details regarding the data cache implementation can be found in the subsequent sections.

Data cache control variables have been added to sim_core.h and are listed in Figure[2] The subsequent
sections detail when and how to use these new control variables.

Data Cache
Control Variables
dcache_enabled
dcache_accesses
dcache_hits

Figure 2: Data cache control variables.

Two data cache functions dcache_lookup () and dcache_update() have been added to sim_stages.c.
The subsequent sections contain more details regarding data cache functionality.

The simulator now creates a cdump . txt file that outputs the status of the cache at the end of simulation.
The simulator also prints data cache accesses and hit statistics (corresponding to dcache_accesses
and dcache_hits respectively) at the end of each simulation.

An incomplete dynamic branch prediction implementation has been added to the simulator. The
dynamic branch predictor may be enabled or disabled based on the new program argument described



in the next section. More details regarding the dynamic branch prediction implementation can be
found in the subsequent sections.

9. Branch prediction control variables have been added to sim_core.h and are listed in Figure [3l The
subsequent sections detail when and how to use these new control variables.

Branch Prediction

Control Variables
branch_prediction_enabled
total_branches
correctly_predicted_branches

Figure 3: Branch prediction control variables.

10. Four dynamic branch prediction functions have been added: BTB_lookup (), BTB_target (),
predict_direction(), and predictor_update(). The subsequent sections contain more details re-
garding dynamic branch prediction implementation.

11. The simulator now creates a bpdump . txt file that outputs the status of the BTB and direction predictor
at the end of the simulation. The simulator also prints the total number of conditional branches, and
the number of those branches predicted correctly (corresponding to total_branches and correctly_-
predicted_branches at the end of each simulation.

12. The logic responsible for updating the pipeline state has been moved from sim_core.c into a new
update_simulator_state() function located in sim_stages.c. You SHOULD NOT modify it, but
it will be essential to understand how it stalls the pipeline for memory operations. The subsequent
sections contain more details regarding this function.

1.2 Extra Program Arguments

The simulator executable now accepts 3 program arguments that independently control whether (i) forward-
ing (ii) the data cache and (iii) dynamic branch prediction are enabled:

$ ./simulator OQUT_FILE FORWARDING_ENABLED DATA_CACHE_ENABLED DYNAMIC_BP_ENABLED

where QUT_FILE is an assembled riscy-uconn program, FORWARDING_ENABLED is either O or 1 to indicate that
forwarding is disabled or enabled respectively, DATA_CACHE_ENABLED is either 0 or 1 to indicate that the data
cache is disabled or enabled respectively, and DYNAMIC_BP_ENABLED is either O or 1 to indicate that dynamic
branch prediction is enabled or disabled respectively.

The data cache and branch prediction status is visible in the sim_stages. c file through the dcache_enabled
and branch_prediction_enabled variables declared in sim_core.h.

1.3 Overview of All Changes

At a high level, this programming assignment involves 3 changes to the simulator: (i) Adding dynamic
branch prediction for BNE and BEQ instructions; (i) changing LW and SW instructions to take 5 total cycles
in the memory stage to simulate memory access latency; and (iii) implementing a single-cycle two-way set
assosiative data cache to improve the memory access latency of LW and SW instructions in the memory
stage. The following sections describe the required modifications to the simulator. Each stage should use
your PA2 implementation as its starting point. It is assumed that your PA2 implementation is correct.



1.4 Multi-cycle Memory Stages

1.4.1 Overview

The memory stage must be modified to model the memory access latency of LW and SW instructions. The
memory access latency is determined by the dmem_access_cycles control variable. Since this variable is
set to 5 cycles, the memory stage must stall for this many cycles before allowing LW or SW instructions to
progress to the write-back stage.

1.4.2 Memory Related Pipeline Changes

The decode stage must be modified so that pipe_stall is asserted and a NOP is returned when dmem_busy
(discussed in the next paragraph) is asserted. This ensures that the decode and fetch stages stall when the
memory stage stalls. Moreover, when dmem_busy is asserted, the decode function must return before any
modifications are made to the pc_n or j_taken variables. This ensures that the program counter does not
update and the jump logic does not introduce any side effects when the pipeline is stalled.

The 2 new control variables dmem_busy and dmem_cycles have been added to manage stalling in the memory
stage. dmem_busy must be de-asserted at the beginning of the memory stage so that is only asserted for cycles
where it evaluates true as described below. dmem_cycles is used to count the number of cycles the memory
stage has stalled. When it is less than dmem_access_cycles, dmem_busy must be asserted and the memory
stage must return the structure. Asserting dmem_busy ensures that the pipeline stalls whenever the memory
stage is stalled waiting for a data access to complete. When dmem_cycles is equal to dmem_access_cycles,
dmem_busy and dmem_cycles are cleared and the memory access can proceed as usual. The memory stage
must also track data cache accesses and hits for statistics purposes. LW and SW instructions must update
the dcache_accesses variable when dmem_cycles is equal to dmem_access_cycles so that each memory
access is tracked. When the data cache is disabled, dcache_hits should always be 0.

1.4.3 Simulator State

When dmem_busy is asserted the update_simulator_state() function will update the pc, fetch_out,
decode_out, ex_out, and mem_out state variables so that the pipeline holds the state of the fetch, decode,
execute, and memory stages respectively. This is done so that the pipeline stages are able to re-execute
their current instruction when the memory stages are stalled. Thus, it important that dmem_busy is asserted
correctly to avoid unnecccesary stalling.

1.5 Data Cache

1.5.1 Overview

The simulator now features an incomplete data cache implementation that is enabled using the relevant
program argument. The cache is two-way set associative and addressed by a 32-bit data memory address.
Each set contains 2 cache blocks (lines), each cache block contains 4 data words (or 16 bytes), and the cache
has a total size of 256 bytes. This leaves 8 total cache sets. The cache hit latency is fixed at 1 cycle while
cache misses incur dmem_access_cycles (defined as 5) cycles. Note that the cache size is fixed, and should
not be changed.

The following structures are introduced to represent the data cache:

CacheSet Field | Description
block[2] the set’s two cache blocks of type CacheBlock
lru the current LRU block for this set

CacheBlock Field | Description
tag stores the tag of the cache block
valid indicates if the block is valid




Each set is represented by the CacheSet type defined in sim_core.h, and contains (i) an array of type
CacheBlock representing the 2 ways of the set and (ii) the variable 1ru. The CacheBlock type contains the
valid and tag bits for each block in the set. 1ru holds the index of the "least recently used" block in the set,
which consequently is the block to be evicted in the event of a collision. Do note that the CacheBlock
type does not actually contain the cached data. Instead, cached data is returned directly
from the memory[] array when the cache block valid and tag bits indicate that a given memory
address is in the block. On simulator start-up, the cache is initialized such that the the Iru, valid, and
tag variables are zero; in other words, the cache is empty on start-up.

The cache implementation must be completed by implementing the dcache_lookup() and dcache_update ()
functions in sim_stages.c. Each cache block contains 4 words (16 bytes), and each memory address contains
1 word (4 bytes) of data. Consequently, you must decode the appropriate bits from the memory address to
determine the cache set index and block offset. The remaining most significant bits of the memory address
should be tracked as tag bits. The below figure illustrates how the data cache structure is implemented:

Way 0 Way 1
LRUblock?
Valid? Tag Valid? Tag
dcache[0].1ru dcache[0].block[0@].valid dcache[@].block[@].tag dcache[@].block[1].valid dcache[@].block[1].tag
> | dcache[i].1lru dcache[i].block[@].valid dcache[i].block[@].tag dcache[i].block[1].valid dcache[i].block[1].tag
dcache[7].1ru dcache[7].block[0@].valid dcache[7].block[@].tag dcache[7].block[1].valid dcache[7].block[1].tag
*Extract index bits 7
from the memory
*dcache_lookup() address to access
*dcache_update() the cache set

Figure 4: Visualization of data cache and function accesses.

1.5.2 Data Cache Functions

The dcache_lookup() function takes a memory address as input and extracts the cache set index bits to
determine which set to access. Within the set, if (i) the tag bits in either of the two blocks match the tag
bits of the input memory address and (ii) that cache block is valid, the function must return 1. Otherwise,
the function returns 0. In other words, the function returns 1 for a cache hit or 0 for a cache miss.



The dcache_update() function takes a memory address as input and extracts the cache set index bits to
determine which set to access. Then, you must check if block 0 (i) contains the decoded tag or (ii) is invalid.
If either of these two conditions are true, then the valid bit of the block is set to 1 (if invalid), the tag bits
are set appropriately (if invalid), and the LRU bit must be set to the index of the other block. If those
conditions are not true for block 0, a similar check is done for block 1. If these conditions are untrue for
both blocks, then a valid cache block must be evicted for the new one. The cache set identified by 1lru is the
victim, and should be replaced with the new tag. Remember to also update the 1ru variable to the block
opposite of the victim.

1.5.3 Data Cache Related Pipeline Changes

The dcache_update() and dcache_lookup() functions are used in the memory stage for LW and SW
instructions. When the cache is enabled, LW and SW instructions must perform a cache lookup on the
effective memory address to determine if the memory address is a cache hit or miss. If the memory address
is a hit, the memory stage does not stall and the memory access proceeds as usual. In this case, dcache_-
hits must be incremented to track the number of cache hits. If the address is a miss, the memory stage
stalls as described in the previous section. Regardless of a cache hit or miss, dcache_accesses should be
incremeneted, and the memory address must be updated in the cache with dcache_update() before it is
accessed. This is done so that the address is cached for future memory lookups.

1.6 Branch Prediction

1.6.1 Overview

Previously, BNE and BEQ instructions utalized a static PC+4 predictor, which invoked a large penalty in the
case of of a branch taken. This assignment extends the capability of branch prediction by introducing a
branch target buffer (BTB) and a single-level branch history table (BHT). The table below shows the fields
of the BTB structure:

BranchTargetBuffer Field | Description

inst_addr the instruction address of the entry
branch_target the branch address of the entry
valid indicates if the entry is valid

The BHT contains a single-bit predictor, and has 2 states: 0 for branch not taken, and 1 for branch taken.
btb[] is the array that holds each entry of the BTB, and bht[] is the array that holds each 1-bit predictor
of the BHT. Both the BTB and BHT have 32 entries, and are indexed by the lower bits of an instruction’s
address. Keep in mind, howevever, that the two lowest bits of each instruction address will always be 0
(since PC is only incremented in multiples of 4). You should avoid using these in the index, as they will not
yeild the maximum unique indicies into the BTB/direction predictor. Therefore, you should use the next
lowest bits besides bits 0 and 1 . Determine which bits you need for the specified number of BTB/BHT
entries, and extract those bits from the intruction’s address to index those arrays when necessary. Note that
the number of entries in the BTB/BHT are fixed and should not be modified. The below figure illustrates
the implementation of the BTB and BHT structures, and what functions access each structure:



Branch History Table Branch Target Buffer

. . . . Instruction
Direction Bit Valid? Address Branch Target Address
bht[0] btb[@].valid btb[0].inst_addr btb[0@].branch_target
— bht[i] >l btb[i].valid btb[i].inst_addr btb[i].branch_target
—> —
bht[31] btb[31].valid | btb[31].inst_addr | btb[31].branch_target
*BTB_target()

*BTB_lookup()
*Extract index bits 7

N . . . from the
predict_direction() ———— instruction address
to access the
*predictor_update() BTB/BTH

Figure 5: Visualization of branch prediction structures.

1.6.2 Branch Prediction Functions

Branch prediction itself is implemented with the 4 functions: BTB_lookup (), BTB_target (),
predict_direction(), and predictor_update().

BTB_lookup() takes an instruction’s address as the input. The index is extracted from the input instruction
address to determine which BTB entry to look up. If (i) the indexed BTB entry’s instruction address matches
the input instruction address and (ii) the entry is valid, 1 is returned (BTB hit). Otherwise, you must return
0 (BTB miss).

BTB_target () takes an instruction’s address as the input. The index is extracted from the input instruction
address to determine which BTB entry to look up. Then, the function returns the branch target address
being stored by that BTB entry.

predict_direction() takes an instruction’s address as the input. The index is extracted from the input
instruction address to determine which direction predictor entry to look up. Then, the corresponding entry
is looked up in the BHT. If the prediction bit is a 0, the function should return 0 (branch not taken), and if
it is a 1, the function returns 1 (branch taken).

predictor_update() takes 3 inputs: the instruction’s address, a branch target address, and a branch
direction. The index is extracted from the input instruction address to determine which BTB and direction
predictor entry to update. The corresponding BTB entry is updated with the instruction address and branch



target address passed as arguments, and should be marked as valid. The corresponding BHT entry should
also be updated with the resolved branch direction passed in as an argument.

1.6.3 Branch Prediction Related Pipeline Changes

During the fetch stage, the current instruction (memory[pc / 41) and it’s address (pc) is saved to the State
structure in the inst and inst_addr fields, respectively. Control flow instructions that previously used pc to
calculate branch/jump addresses in PA2 should now use inst_addr + 4 instead. The same checks done in
PA2 are done for jumps, mispredicted branches, and stalls. After these checks, a branch prediction is made
if dynamic branch prediction is enabled. Using the instruction’s address, you should use the BTB_lookup ()
function to check if the current address is a BTB hit. Given a BTB hit, the predict_direction() function
should be used to index the BHT and check what direction is predicted for that instruction address. In the
case of a BTB hit and branch taken predicted, BTB_target () is used to obtain the next predicted address
and is set to pc_n. When dynamic branch prediction is disabled, the fetch stage operates the same as it did
in PA2.

In the execute stage, only BNE and BEQ are affected by branch prediction. Once all hazards are resolved for
these instructions, if dynamic branch prediction is enabled you must determine (i) if the instruction resolved
to a branch taken or not and (ii) if branch taken was predicted in the fetch stage or not. BTB_lookup() and
predict_direction() should be used to determine what prediction was made in the fetch stage. If there
is a mismatch between the resolved branch direction and the predicted branch direction, br_mispredicted
should be set, which will cause instructions in decode and fetch to be flushed as they were in PA2. If a branch
was mispredicted, you must set pc_n to the correct address depending on what direction the mispreciction
was. You should then make a call to predictor_update() using the instruction’s address, the branch target
address, and the resolved direction of the branch. This is to ensure that future fetches of this instruction have
an updated entry in the BTB and branch predictor. It is important that only BEQ and BNE instructions
create an entry in the BTB.

If dynamic branch prediction is disabled, then PC+4 will always be statically predicted for conditional
branches. In this case, conditional branches behave exactly as they did in PA2. br_mispredicted should
be set whenever the branch is taken, and pc_n should be corrected with the branch target address.

Finally, make sure to increment correctly_predicted_branches whenever there was no branch mispredict,
and that total_branches is incremented for all branches. Note that a predicted branch outcome can
be correct even when dynamic branch prediction is disabled. If a static PC+4 prediction was
correct, you should still increment correctly_predicted_branches .
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