
University of Connecticut
CSE 4302 / CSE 5302/ ECE 5402: Computer Architecture

Fall 2024

Programming Assignment 1:
Pipelined RISC-V Simulator with Interlocks and No Control-Flow Instructions

Due September 17, 2024 @ 11:59 PM on HuskyCT

Ensure that your git repository is up-to-date by executing git pull within the cse4302 directory. This
will create a new pa1 directory in the repository root that contains the materials for this programming
assignment.

Navigate to the assembler and make it again. Periodically, the assembler may be updated with new func-
tionality, so it is important to ensure it is current between assignments.

The following is a brief description of the relevant materials in the pa1 directory:

src/ Simulator source code

unittests/ Simulator unit tests (test programs)

README.md Simulator and unit test build instructions

assemble_all.sh Bash script to automatically assemble the tests in unittests/

dump_all.sh Bash script to automatically gather the outputs for all unit tests

There are several source code files in the src directory, but you will only modify sim_stages.c for this
assignment; you are not allowed to modify any other files in the src and unittests directories
or the two Bash scripts.

You will modify sim_stages.c to implement a fully functional 5-stage pipelined processor simulator for the
subset of riscv-uconn ISA described in this document. Your simulator implementation must be functional
and terminates for all unit tests in the unittests directory. The dump_all.sh script will automatically
execute each assembled unit test and gather the required outputs in a single pa1_out.txt file. You are
encouraged to write and test your own unit tests, but they will not contribute to your grade for PA1.

A basic implementation of the pipeline stages (fetch(), decode(), execute(), memory(), and writeback())
that support the ADDI instruction are in sim_stages.c. You will modify this file to support the necessary
implementations for this assignment.

You are expected to modify sim_stages.c to support the following instructions.

1. R-Type Instructions: ADD, SUB, AND, OR, XOR, SLT, SLL, SRL

2. I-Type Instructions: LW, ADDI, ANDI, ORI, XORI, SLTI, SLLI, SRLI

3. S-Type Instructions: SW

4. U-Type Instructions: LUI

Support for Non Control-flow RISC-V instruction types: Implement the code for all PA1 instruction
types in the sim_stages.c decode(), execute(), memory(), and writeback() functions. Each stage must
only use the provided State structure to populate the necessary dynamic metadata for each instruction.

The pipeline implementation given to you as a starting point does not support interlocking in the presence
of hazards. However, individual unit tests, ITYPE_*.asm1, RTYPE_*.asm, STYPE_STORE.asm,

1* denotes the various instruction types in this category. Consult the unittests directory for more details.

1



and UTYPE_LUI.asm are sufficient to test the functionality without requiring the support for dependent
instructions in the pipeline. You are encouraged to use these tests to complete this part of the assignment.

Support for Pipeline Interlocks: This component of the assignment assumes each instruction individually
and functionally executes through the pipeline. The pipeline must handle data and structural hazards
when multiple instructions co-exist with data dependencies. Note that control hazards are not an issue since
control-flow instructions are not supported in PA1.

Pipeline-related control variables are provided in sim_core.h and listed in Figure 0.1. These global variable
are accessible to each pipeline stage and must be updated correctly to implement pipeline interlocks.

Pipeline Control Variables Description
pipe_stall Set when the pipeline must stall
we_exe, we_mem, we_wb Set when an instruction performs a writeback
ws_exe, ws_mem, ws_wb Specifies the register index to be written to

Figure 0.1: Global variables used to control the pipeline.

In the start of fetch stage, the fetch_out struct must be returned if the pipe_stall is 1. This ensures
that the fetch stage does not advance pc to avoid structural hazard in the pipeline’s fetch stage. When the
pipeline is not stalled, advance pc_n sequentially to the current pc + 4.

The decode stage must detect all data hazards2 to ensure correct execution of the pipeline. This check
uses the global pipeline control variables we_exe, ws_exe, we_mem, ws_mem, we_wb, and ws_wb to determine
if the decoded instruction is dependent on a pending register update in a later stage of the pipeline. The
write enable signals (we_*) are set when the instruction in the corresponding stage writes to a register, and
the write select signals (ws_*) contain the register index of the register to be written to in the corresponding
stage. The check also uses local variables in the decode stage that assert when the decoded instruction reads
the first and/or the second register operand respectively. Care must be taken when asserting these variables
when register x0 (zero) is read by an instruction. Since register x0 is not allowed to be written to during
normal program operation, any data dependencies on this register should be ignored.

The data hazard interlock check must force the pipeline to stall by asserting pipe_stall until the necessary
data dependency is resolved in the writeback stage. On asserting pipe_stall, a nop3 must be returned for
the decode stage to ensure that the current dependent instruction does not propagate in the pipeline.

The pipeline stages after decode do not stall due to data or structural hazards. However, they need to
support the global pipeline control variables needed to implement the interlock check in the decode stage. In
the execute stage, we_exe must be asserted for instructions that will update the register file. When this is
the case, ws_exe must be set to the register specifier that will be written to. Similarly, we_mem and ws_mem
must be updated in the memory stage, and we_wb and ws_wb in the writeback stage.

When you have completed the programming assignment, submit your sim_stages.c and pa1_-
out.txt files via HuskyCT.

2In the 5-stage in-order pipeline, only read-after-write (RAW) hazards need to be supported.
3The nop is provided in sim_core.c as a Struct constant, and you must use it when returning a nop. The encoding of a nop

is addi x0, x0, 0.

2


