
University of Connecticut
CSE 4302 / CSE 5302 / ECE 5402: Computer Architecture

Fall 2024

Programming Assignment 3:
In-order Pipelined RISC-V Simulator with Multi-cycle Execution

Due October 29, 2024 @ 11:59 PM on HuskyCT

Ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new pa3 directory in the repository root that contains the materials for this
programming assignment. There are several source code files in the src directory, but you will only
modify sim_stages.c for this assignment; you are not allowed to modify any other files in
the src and unittests directories or the two bash scripts.

You will modify sim_stages.c to implement a fully functional pipelined processor simulator that
supports in-order execution with multi-cycle latency for the riscv-uconn ISA. Your simulator im-
plementation must be functional and terminate for all unit tests in the unittests directory. The
dump_all.sh script will automatically execute each assembled unit test and gather the required
outputs in a single pa3_out.txt file. A pa3_out_gold.txt is provided to you to test the register
and memory state output of your assignment. This file does not provide the performance counters
data and thus must be ignored using -I ‘TOTAL CYCLES SIMULATED’ and -I ‘AVERAGE CPI’
flags when using the diff utility for comparisons.

The simulator now features a 4-stage pipeline in sim_stages.c. The fetch and decode stages must
process all RISC-V instructions and capabilities supported in PA2. The execution and memory
stages are now two parallel pipelines. The execution stage executes all non load/store instructions
in a single cycle. However, execution_ld_st stage executes the load and store instructions in
multiple cycles (6 cycles in this assignment). The writeback stage receives an executed instruc-
tion from one of the execution stages and performs the register write-back operation based on the
instruction type. The pipeline must process all instructions in-order. Therefore, the decode stage
must stall when the execution_ld_st stage is busy processing a multi-cycle load or store instruc-
tion. To support this additional interlock check, a global variable dmem_busy is asserted in the
execution_ld_st stage to cause instructions in previous stages to stall.

The pipelined parallel execution is supported using the process_instructions() function in sim_-
core.c. The pipeline stages are executed in backward order to capture the current cycle’s state
in the committed_inst and pc_n variables, and the wb_out_n, ex_out_n, ex_ld_st_out_n,
decode_out_n, and fetch_out_n state structs together referred as *_n microarchitecture next
state of the pipeline stages. The *_n state structs are globally visible in sim_stages.c. At the end
of each cycle, all microarchitecture state is updated in the process_instructions() function. This
is represented by pc and the wb_out, ex_out, ex_ld_st_out, decode_out, and fetch_out state
structs that are also globally visible in sim_stages.c.

In the sim_stages.c, you are expected to implement the functionality of all RISC-V instructions
and capabilities supported in PA2 using the new 4-stage pipeline with multi-cycle execution of load
and store instructions. Each stage does not receive explicit arguments, but all the microarchitecture
stage is accessible to the pipeline stages for ensuring their intended functionality that is described
next.

1



In each cycle, the pipeline stages execute their functionality to exploit instruction level parallelism.
The following global variables are visible to the sim_stages.c in addition to the *_out_n and
*_out state structs for the fetch, decode, execute, execute_ld_st and writeback stages.

• forwarding_enabled enables/disables the forwarding paths.

• j_taken tracks an unconditional branch.

• br_mispredicted tracks a conditional branch.

• we_exe, we_mem, and we_wb track register file write enables for the execute, execute_ld_st,
and writeback pipeline stages respectively.

• ws_exe, ws_mem, and ws_wb track register file index to be written to for the execute, execute_-
ld_st, and writeback pipeline stages respectively.

• dout_exe, dout_mem, and dout_wb hold the value of forwarded data for the execute, execute_-
ld_st, and writeback pipeline stages respectively.

• dmem_busy tracks if a valid load or store instruction is being executed in the execute_ld_st
stage. It must be set in each valid cycle of a load or store instruction and reset during the
last cycle of the multi-cycle execution.

• dmem_access_cycles is a constant variable that holds the number of cycles a load or store
instruction spends in the execute_ld_st stage. This variable is set to 6 for this assignment.

• dmem_cycles is a counter to track the number of elapsed cycles for a load or store instruction
in the execute_ld_st stage.

The fetch stage returns the state struct in one of the following conditions every cycle. A nop is
returned if a control flow instruction instructs pipeline flush. This is possible for J-Type and B-Type
instructions in this cycle. The fetch_out is returned when the current instruction is fetch gated
in case the pipeline is stalled. In this pipeline, both pipe_stall and dmem_busy indicate a stall
condition. The fetch_out_n is returned when a new instruction is fetched from the instruction
memory. This struct must be populated with the necessary fetch stage metadata (the next state)
before returning.

The decode stage returns the state struct in one of the following conditions every cycle. When
no pipeline flush or stall condition is detected, the decode functionality must be performed based
on the instruction type being passed on from the fetch stage. The fetch_out struct is first copied
into decode_out_n. Then, the decode functionality is performed, and the decode_out_n struct is
populated with the necessary decode stage metadata before returning. If a control flow instruction
instructs pipeline flush, a nop is returned. This is possible for B-Type instruction in this cycle.
Furthermore, when pipe_stall or dmem_busy is detected to indicate a stall condition, this pipeline
stage also returns a nop.

The execute stage performs the ALU functionality for all non load and store type instructions
in a single cycle. It reads the decode_out struct as an input to compute its next state output,
ex_out_n. If the decode_out indicates nop, or a load or store instruction type, then it returns
a nop state struct. Otherwise, a valid instruction is received and processed for execution. The
ex_out_n struct must be populated with the necessary execute stage metadata before returning.
To support pipeline interlocking and data forwarding, the we_exe, ws_exe, and dout_exe global
variables must be updated correctly in this stage.

2



The execute_ld_st stage performs the multi-cycle execution of load or store instruction types.
To ensure, in-order execution and writeback of the pipeline, the dmem_busy flag must be asserted
during the execution of these long latency instructions to stall the fetch and decode stages. The
execute_ld_st stage first reads the decode_out struct as an input to compute its next state output.
If the decode_out indicates nop, or a non load or store instruction type then it must de-assert
dmem_busy to ‘0’, and return a nop state struct. If the dmem_busy is ‘0’ and a load or store
instruction is received from the decode_out, it indicates the first cycle of the 6-cycle load or store
operation. In this first cycle, the memory address metadata is computed for the load or store
instruction, and ex_ld_st_out_n state struct is returned. The dmem_busy must be set to ‘1’ in
this cycle to indicate the start of a long latency memory operation to the pipeline. The cycles when
dmem_busy is detected as ‘1’, the ex_ld_st_out is returned to capture the multi-cycle operation
of the load or store instruction by holding on to its state. In these cycles, the dmem_cycles
counter must be updated to track the correct latency of the load and store instructions. During
the last (6th) cycle of this multi-cycle load or store instruction execution, the actual data memory
access is performed and the dmem_busy, dmem_cycles, we_mem, ws_mem, and dout_mem global
variables are updated before returning ex_ld_st_out state struct.

The writeback stage returns the state struct in one of the following conditions every cycle. A
nop.inst is returned if both ex_out and ex_ld_st_out are nop. In case ex_ld_st_out is a valid
load or store instruction type but dmem_busy is ‘1’, the nop.inst is returned as there is no writeback
since the load or store has not reached its last cycle of execution. In all other scenarios, there is a
valid instruction to be committed. Note that ex_out and ex_ld_st_out state structs must never
send a valid instruction to the writeback stage in the same cycle as the pipeline ensures in-order
execution. Based on the instruction type being processed, the ex_out or ex_ld_st_out state struct
is read to receive and process writeback functionality by updating the wb_out_n state struct. The
we_wb, ws_wb, and dout_wb global variables are updated before returning wb_out_n.inst to
indicate a committed instruction to the process_instructions() function in sim_core.c.

When you have completed the programming assignment, submit your sim_stages.c and
pa3_out.txt files via HuskyCT.

3


