University of Connecticut
CSE 4302 / CSE 5302 / ECE 5402: Computer Architecture
Fall 2024

Programming Assignment 4:
Out-of-Order Execution in Pipelined RISC-V Simulator

Due December 2, 2024 @ 11:59 PM on HuskyCT

Ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new pa4d directory in the repository root that contains the materials for this
programming assignment. There are several source code files in the src directory, but you will only
modify sim_stages.c for this assignment; you are not allowed to modify any other files in
the src and unittests directories or the two bash scripts.

You will modify sim_stages.c to implement a fully functional pipelined processor simulator that
supports in-order execution with multi-cycle latency for the riscv-uconn ISA. Your simulator im-
plementation must be functional and terminate for all unit tests in the unittests directory. Your
simulator needs to work with two configuration flags: ocoo_enabled and forwarding_enabled. This
assignment must support all four cases for these flags. The dump_all.sh script will automatically
execute each assembled unit test and gather the required outputs in a single pa4_out.txt file. A
pad_out_gold_WO_prf_ctr.txt is provided to you to test the register and memory state outputs.
This file does not provide the performance counters data and thus must be ignored using -1 ‘TOTAL
CYCLES SIMULATED’ and -1 ‘AVERAGE CPI’ flags when using the diff utility for comparisons.

This programming assignment implements an out of order execution and commit of instructions in
addition to the functionality supported in PA3. Similar to PA3, the execution stage executes all
non load/store instructions in a single cycle. However, execution 1d st and execution 2nd -
ld st stages execute up to two different load/store instructions concurrently. Each load/store unit
takes multiple cycles (6 cycles for each load/store instruction execution) in the execution phase.
The writeback stage receives an executed instruction from one or more of the three execution
stages in a given cycle, and performs the register write-back operation based on the instruction
type. The pipeline executes and commits instructions out-of-order. Therefore, the Non Load-
Store Instructions that are not dependent on the load-store instructions in the execution 1d st
or execution 2nd Id st stages execute in the pipeline and commit out of order. Moreover,
load/store instructions that are allowed to enter the two load/store execution stages execute and
commit out of order. Therefore, up to three instructions may complete writeback in a given cycle.

The additional load/store execution stage maintains its own structs. Moreover, in addition to
the state structs from PA3, the writeback stage tracks the three possible commits using explicit
structs for each execution unit. Similarly to PA3, the microarchitecture state is also updated in the
process_instructions() function in sim_core. c.

In addition to the variables already present in PA3, the following global variables are added to PA4
to support out of order execution:

e ooo_enabled enables/disables the Out-of-Order execution of Instructions.

e we_wb, we_ld_st_wb, and we_ld_st_2_wb track register file write enables for instructions in
the writeback stage.

e ws_wb, ws_ld_st_wb, and ws_1d_st_2_wb track register file index for instructions in the write-
back stage.

e dout_wb, ws_1d_st_wb, and dout_1d_st_2_wb hold the value of forwarded data for instruc-
tions in the writeback stage.

e we_mem2, ws_mem2, and dout_mem2 are added to track the second load/store execution unit.

e dmem_busy2 and dmem_cycles2 are added to support the second load/store unit.

decode execute | execute Id st | execute 2nd 1d st | writeback

non LD/ST || RAW,ey | LD : RAW, LD : RAW, ¢4 RAW, ¢4
LD : WAW, ¢4 LD : WAW, ¢4

LD RAW,eg | LD : RAW, g LD : RAW, ¢4 RAW .¢q
ST : RAWem ST : RAW nem

ST RAW,eq | LD : RAW, 4 LD : RAW, ¢4 RAW ¢4
LD : WARem LD : WARem
ST : WAW pmem ST : WAW nem

terminate LD or ST LD or ST

The decode stage must support the PA4 functionality for out of order execution by tracking
conditions when an instruction is allowed to proceed into the execution pipeline. The table shows
various scenarios for stall conditions for an instruction being processed in the decode stage. The
ooo_enabled flag must be used to ensure out of order execution works with and without forwarding.
When this flag is zero, your implementation must perform the in-order execution of PA3 and only
allocate load and store instructions to the first load/store unit. The instruction State struct is
modified to support 1d_st_unit variable to track the assigned load/store unit during execution.
This flag value of 1 implies the instruction is scheduled to execute using execution 1d st and its
value of 2 implies the load/store instruction is allocated to execution 2nd 1d st. Only during out
of order execution, both load/store units may be allowed to execute in parallel.

When any instruction except terminate type instruction is in the decode stage, it may stall if any
of its operand(s) detect a RAW hazard with another instruction’s destination register in any of the
execute stages or the writeback stage. Note that writeback stage during OOO can commit up to
three instructions simultaneously.

For terminate instruction (addi zero,zero,1) in the decode stage, a valid load or store in the
load/store units indicates another older instruction that must proceed to its final execute cycle
before the terminate instruction is allowed to enter the execution stage. Otherwise, terminate
instruction may commit before an older instruction and terminate the program prematurely.

When a non load/store instruction is in decode stage and there is a register WAW hazard for a
valid instruction in the load/store units, the decode must stall since otherwise the non load/store
instruction may commit its value ahead of an older register write to the same register.

When a load is in the decode stage and there is a RAW hazard in memory with another store
instruction in one or both of the load/store units, the decode must stall. Since decode does not
know the address of its load instruction, this stall is enforced whenever a load type instruction is
active in the load/store unit(s), i.e., not completed execution.

When a store is in the decode stage and there is a WAR hazard in memory with another load

instruction in one or both of the load/store units, the decode must stall. Since decode does not
know the address of its store instruction, this stall is enforced whenever a load type instruction is
active in the load/store unit(s), i.e., not completed execution.

When a store is in the decode stage and there is a WAW hazard in memory with another store
instruction in one or both of the load/store units, the decode must stall. Since decode does not
know the address of its store instruction, this stall is enforced whenever a store type instruction is
active in the load/store unit(s), i.e., not completed execution.

When a load is in the decode stage and older load is in the load/store unit(s), the decode does not
stall.

Note that for all previous stalls due to the load/store units, the load/store unit busy signal must
be asserted when a load or store enters execution. During its last execution cycle, the busy flag
is de-asserted and the store to memory completes, or a load from memory completes with data
forwarded if forwarding is enabled. The above-mentioned stalls apply when the load/store unit(s)
are busy. A load or store in its final execution cycle may not stall decode since it is considered to
have completed execution in this cycle. Do not make any assumptions about when in the execution
stage a load or store to memory is initiated and memory is being read or written to. The only
known fact about the load/store units is that a load or store completes execution in its final cycle
of execution.

Once an instruction is allowed to proceed past the decode stage, it is executed in one of the three
execution units. This assignment must support the appropriate functionality needed for the exe-
cute(), execute ld_st(), and execute 2nd 1d _st() stages. Note that 1d_st_unit flag must
dictate whether a load or store executes in its allocated execution stage.

The writeback stage must be modified to support up to three instruction writebacks (and data
forwarding) in a given cycle when ooo_enabled flag is set.

When you have completed the programming assignment, submit your sim_stages.c and
pad_out.txt files via HuskyCT.

