
University of Connecticut
CSE 4302 / CSE 5302 / ECE 5402: Computer Architecture

Fall 2024

Graduate Student Project:
RISC-V Simulator: Dynamic Branch Prediction and Data Cache

Due December 13, 2024 @ 11:59 PM on HuskyCT

Ensure that your git repository is up-to-date by executing git pull within the cse4302 directory.
This will create a new project directory in the repository root that contains the materials for this
programming assignment. There are several source code files in the src directory, but you will only
modify sim_stages.c for this assignment; you are not allowed to modify any other files in
the src and unittests directories or the two bash scripts.

You will modify sim_stages.c to implement a fully functional pipelined processor simulator that
supports in-order and out-of-order execution with multi-cycle latency for the riscv-uconn ISA. Your
simulator implementation must be functional and terminate for all unit tests in the unittests
directory. The dump_all.sh script will automatically execute each assembled unit test and gather
the required outputs in a single project_out.txt file. A project_out_gold.txt is provided to
you to test the register and memory state output of your assignment. This file does not provide
the performance counters data and thus must be ignored using -I ‘<NAME OF PERFORMANCE
COUNTER FLAGS> when using the diff utility for comparisons.

The simulator executable for the project accepts following arguments:

$ ./simulator OUT_FILE FORWARDING_ENABLE OOO_ENABLE DP_ENABLE DCACHE_ENABLE

• FORWARDING_ENABLE enables/disables data forwarding in the pipline. For the project, this flag
is enabled (set to 1) and implements all logic needed for PA4.

• OOO_ENABLE enables/disables the Out-of-Order execution of Instructions. For the project, this
flag is enabled (set to 1) and implements all logic needed for PA4.

• DP_ENABLE uses a value of 0 to indicate the baseline not-taken static predictor used in PA4.
When set to 1, it implements the 1-level dynamic branch predictor, and when set to 2, it
implements the 2-level dynamic branch predictor.

• DCACHE_ENABLE uses a value of 1 to indicate the use of direct-mapped data cache in the exe-
cution_ld_st and execution_2nd_ld_st stages. When set to 2, it implements the 2-way
set associative cache, and when set to 3, it implements the 4-way set-associative cache. Note,
that a value of 0 indicates the baseline operation of PA4, where no data cache is implemented.

1 Dynamic Branch Prediction

Previously, B-Type instructions utilized a static not-taken (pc + 4) branch predictor in the fetch
stage, which invoked a large penalty in the case of a taken branch. This project extends the
capability of branch prediction by introducing Branch Target Buffer (BTB) and a Branch History
Table (BHT) for a 1-level dynamic branch predictor, and with the addition of a Branch History

1



Shift Register (BHSR) for the 2-level dynamic branch predictor. These components work together
to enable branch predictions during the fetch stage. Specifically, the BTB calculates the branch
target address in both dynamic prediction schemes. However, for 1-level direction prediction uses
the BHT, whereas the 2-level use the BHSR to index into the BHT for branch direction prediction.
When the branch resolves in the execute stage, the BTB, BHT, and BHSR are updated.

Each entry of the BTB includes the following metadata stored in the BranchTargetBuffer Struct.
The inst_addr is the instruction address and inst_addr is the branch target address. The valid
indicates whether the BTB entry is valid.

The BHSR is a 5-bit shift register that is used to record branch pattern history for branch instruc-
tions.

Each BHT entry contains a two-bit predictor, and has 4 states: {00} ↔ N, {01} ↔ NT, {10}↔ TN,
and {11} ↔ T. These mappings are provided in the sim_core.h file as the PREDICTION enum. The
state machine scheme that you must use is given in 1.1.

Figure 1.1: Stage machine logic for the two-bit predictor entries of bht[].

Figure 1.2 shows the data structures used for the dynamic branch predictors.

Branch Target Buffer (BTB)

ValidTarget 
Address

Instruction 
Address

00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
00x000000000x00000000
10x0000002C0x00000020
00x000000000x00000000
00x000000000x00000000

...
00x000000000x00000000

beq x4, x5, 12 

0001000000000000…0PC

32 
Entries

(a)

2-Bit SM
01
01
01
11
01
01
01
…
01

BHT

32 
Entries

beq x4, x5, 12 

0001000000000000…0PC

(b)

00011
BHSR

2-Bit SM
01
01
01
11
01
01
01
…
01

BHT

32 
Entries

(c)

Figure 1.2: Data structures used in the dynamic branch predictors. (a) 32-entry BTB,
(b) 32-entry BHT in 1-level Branch Predictor, and (c) 5-bit BHSR and 32-entry BHT
in 2-level Branch Predictor.

Each structure is implemented as follows: btb[] is an array that holds 32 entries of the BTB.
bht[] is also a 32-entry array that holds the 2-bit direction predictor for each entry. The btb[]
entries are initialized to zero. The bht[] predictors are initialized to {00} (N), or the “strongly not

2



taken” state. For 1-level predictor both btb[] and bht[] are both indexed by the lower bits of an
instruction’s address (direct mapping). Keep in mind that the two lowest bits of each instruction
address will always be 0 (since PC is only incremented in multiples of 4). You should not use these
lowest two bits in the index calculation. To index into the 32-entry btb[] and bht[], bits 2-6 need
to be used from the program counter.

For 2-level predictor, the btb[] is indexed using the lowest 5 bits in the bhsr variable. Note: Since
the bhsr variable itself is larger than 5 bits, you will always truncate the upper bits to
‘0’ to avoid indexing outside of the bht[] capacity.

1.1 Branch Prediction Functions

The dynamic branch predictor is used when branch_prediction_enabled flag is set to 1 for 1-
level and 2 for 2-level predictor. The dynamic branch predictors must use the following functions:
BTB_lookup(), BTB_target(), BTB_update(), predict_direction(), and direction_update().

BTB_lookup() takes an instruction’s address as the input. The input instruction address determines
if the indexed BTB entry’s instruction address matches the input instruction address, and if the
entry is valid, 1 is returned (BTB hit). Otherwise, it must return 0 (BTB miss).

BTB_target() takes an instruction’s address as the input and returns the branch target address
stored by that BTB entry.

BTB_update() takes an instruction’s address and branch target address as inputs. It sets the
instruction address, branch target address, and valid bit to ‘1’ in the corresponding entry.

predict_direction() For a 1-level predictor the function takes an instruction address to index into
the BHT, whereas for a 2-level predictor BHSR is used to index into the BHT and the corresponding
prediction bits are checked as shown in 1.1. If the bits indicate “T” or “TN”, then this function returns
‘1’ (for predict branch taken). Otherwise, this function returns ‘0’ (for branch not taken).

direction_update() The function takes the instruction address and the branch direction as the
input (‘1’ for taken, ‘0’ for not taken). For 1-level predictor the instruction address is used to index
into the BHT for update, whereas for 2-level predictor the BHSR is used to determine which BHT
entry is being updated. The state machine logic performs state transitions based on the actual
branch direction using 1.1.

For a 2-level predictor, the BHSR is also updated after updating the BHT. The input direction bit is
shifted into the BHSR by shifting the BHSR to the left by 1 and bitwise ORing the least significant
bit with the direction bit. Remember that only bits 4 to 0 are used to record branch
history, as the BHT has only 32 entries. Upper bits beyond bit 4 must be cleared to
‘0’.

1.2 Pipeline Modifications

The dynamic branch predictors are used when branch_prediction_enabled flag is set to 1 or 2.
Otherwsie, the default not-taken static predictor must be used. The State structs are also modified
to include a br_predicted flag that may be used to identify if the dynamic predictor is being used
for a given instruction’s branch prediction. Following modifications are needed in each stage to
incorporate the dynamic branch predictors:

In the fetch stage, if branch_prediction_enabled is set to 1 or 2, then BTB_lookup() is used to

3



check if the current instruction has a valid entry in the BTB. If so, then predict_direction()
is used to check the branch direction prediction. For a taken branch, the function BTB_target()
is used to get the target address, and the br_predicted flag set to ‘1’ to indicate a taken branch
predicted instruction. Otherwise, this field should be ‘0’.

In case of the dynamic predictors being enabled, the BTB hit and the BHT direction of ‘taken’ uses
the BTB target address to update the pc_n using advance_pc() function. Otherwise, the pc_n is
incremented using the not-taken path.

In the execute stage, for all B-Type instructions (BEQ, BNE, BLT, BGE), if the resolved branch
direction (“taken” or “not taken”) does not match what was predicted in fetch, then the branch
is mispredicted, and sets the br_mispredicted variable. Also, if the branch is mispredicted in
the fetch stage, then pc_n is set to the corrected address to recover the pipeline. In addition, if
branch_prediction_enabled is set, then the BTB_update() and direction_update() functions
are called to update the BTB and BHT.

Finally, all B-Type instructions must increment the total_branches variable, while only correctly
predicted branches increment the correctly_predicted_branches variable. Note: You should
still be incrementing correctly_predicted_branches even when branch_prediction_en-
abled is 0; the prediction will just always be pc_n = pc+4, like in previous assignments.

2 Data Cache

For this project, the dcache_enabled flag indicates one of the three options for a data cache that is
concurrently accessible in both execution_ld_st and execution_2nd_ld_st stages. A cache
hit incurs dcache_access_cycles (fixed to 2) cycles, while cache misses incurs dmem_access_-
cycles (fixed to 6) cycles. Note: when the data cache is disabled, every memory access
will behave as a “cache miss”, taking 6 cycles every time.

The cache has a total size of 256 bytes and cache block contains 4 data words (or 16 bytes). This
implies 16 cache sets for direct-mapped, 8 sets for 2-way set associative, and 4 sets for 4-way set-
associative cache configuration. Figure 2.1 shows the structure layout of the data cache tag array
for each configuration.

(a) Direct Mapped (b) 2-Way (c) 4-Way

Figure 2.1: Data cache layout.

Each set is represented by CacheSet_DM, CacheSet_2_way, or CacheSet_4_way type Struct for
direct-mapped, 2-way, and 4-way set associative configurations in sim_core.h.

The CacheSet_DM contains a single cache block of type CacheBlock that stores the valid and tag
bits for the cache block. The dcache_DM is initialized for the 16 sets in sim_core.c.

4



The CacheSet_2_way contains two cache blocks of type CacheBlock that store the valid and tag
bits for each cache block. The lru_tree uses 1 bit to indicate the “least recently used” block in
the set based on the true LRU scheme for the 2-way set associative cache. The dcache_2_way is
initialized for the 8 sets in sim_core.c.

The CacheSet_4_way contains four cache blocks of type CacheBlock that store the valid and tag
bits for each cache block. The lru_tree uses 2 bits to indicate the “least recently used” block in the
set based on a pseudo 2-bit LRU scheme for the 4-way set associative cache. The dcache_4_way is
initialized for the 4 sets in sim_core.c.

Note that the CacheBlock type does not actually contain the cached data. Instead,
cached data is returned directly from the memory[] array when the cache block valid
and tag bits indicate that a given memory address is in the block. On simulator start-up,
the cache is initialized such that the the lru, valid, and tag bits are all are zero.

The cache implementation must be completed by implementing the dcache_lookup_DM(), dcache_-
lookup_2_way() or dcache_lookup_4_way() and dcache_update_DM(), dcache_update_2_way()
or dcache_update_4_way() functions for direct-mapped, 2-way, or 4-way set associative cache in
sim_stages.c. You must parse the appropriate bits from the memory address to determine the
cache set index and block offset. The remaining most significant bits of the memory address should
be tracked as tag bits. Although the offset bits are not directly used, they are needed to compute
the index and tag bits.

The instruction State struct is modified to support cache_line_hit_way variable to track the
assigned cache line hit during execution for a 2-way and a 4-way cache. This flag value of -1 implies
that there was a cache miss whereas 1,2,3,4 or 1,2 determines cache hit way for a 4-way or a 2-way
cache respectively. This variable is passed to the dcache_update_2_way() or dcache_update_4_-
way() functions for 2-way or 4-way Set Associative Cache.

2.1 Data Cache Functions

For a set associative cache the dcache_lookup_2_way() or dcache_lookup_4_way() function takes
a memory address as input and extracts the index bits to determine which set to access. Within
the set, if for any of the blocks (i) it is valid and (ii) the tag bits in the block match the tag bits of
the input memory address, the function must return the way within the set that is a hit (either 0,
1, 2, or 3 for 4-way or 0 or 1 for 2-way). Otherwise, the function returns -1, which indicates a cache
miss.

For a Direct Mapped Cache, the dcache_lookup_DM() function takes a memory address as input
and extracts the index bits to determine which set to access. Within a set if the block (i) is valid
and (ii) the tag bits in the block match the tag bits of the input memory address, the function must
return a hit (0). Otherwise, the function returns -1, which indicates a cache miss.

For a set associative cache, the dcache_update_2_way() or dcache_update_4_way() function takes
a memory address and cache_line_hit_way as input and extracts the index bits from the address
to determine which set to access. Then, it determines which block is accessed and needs to be
updated. Using the cache_line_hit_way, it must check if the current memory address is already
in the cache. If cache_line_hit_way indicates a hit, then that is the selected block to be updated.
Otherwise, the current memory address is not in the cache, and the block it needs to access is
determined as described below.

5



First, the function must check if there are any invalid blocks (starting with block 0). If an invalid
block is found, then that is the selected block to be updated. Otherwise, a valid cache block needs
to be evicted.

For a 4-way set associative cache the lru_tree bits are used to make this decision. First, bit 0 (the
LSB) is checked. If it is ‘0’, then bit 1 is checked. If bit 1 is ‘0’ then block 3 is selected as the block
to be updated, otherwise block 2 is selected. If bit 0 is ‘1’, then bit 1 is checked instead. If bit 1 is
‘0’, block 0 is the selected block to be updated, otherwise block 1 is selected.

For a 2-way set associative cache the lru_tree bits are used to make this decision. Bit 0 (the LSB)
is checked. If it is ‘0’, then block 0 is selected as the block to be updated, otherwise block 1 is
selected.

After doing these checks, the lru_tree must be updated regardless of if the memory address was
already in the cache or not. Figure 2.2 illustrates the process of replacing a valid block and updating
the LRU bits.

(a) LRU Replacement policy for 2-way (b) LRU Replacement policy for 4-way

Figure 2.2: LRU Replacement policy

2.2 Pipeline Modifications

Both the execute stages of Load Store (execute_ld_st() and execute_2nd_ld_st()) must be
modified to model the memory and cache access latency of load and store instructions, along with
the implementation of the data cache. The memory access latency is determined by the dmem_-
access_cycles control variable and is set to 6, while cache access latency is determined by the
dcache_access_cycles control variable and is set to 2. These variables determine the total
number of cycles spent in the memory stage for a cache miss or hit, respectively. The function
dcache_lookup_*() (based on cache configuration) is used when cache is enabled to determine if a
given memory address is in cache.

The dmem_busy and/or dmem_busy2 flags are only asserted for cycles where it evaluates true as
described below. When the cache is disabled, or there is a cache miss with cache enabled, the dmem_-
access_cycles variable will be used as the latency to model reading from main memory. Otherwise
when there is a cache hit, dcache_access_cycles is used to model the latency of accessing the cache.

Regardless of a cache hit or miss, dmem_cycles and/or dmem_cycles2 are used to count the number
of cycles the memory stage has been accessing data. Whenever dmem_cycles and/or dmem_cycles2
is less than the incurred latency, dmem_busy and/or dmem_busy2 must be asserted and the memory
stage must return the structure. Asserting dmem_busy and/or dmem_busy2 ensures that the pipeline
stalls whenever the memory stage is stalled waiting for a data access to complete.

When dmem_cycles and/or dmem_cycles2 are equal to the incurred latency, dmem busy and cycles

6



flags are cleared and the memory / cache access can proceed as usual. Also, dcache_update_*()
must be called at this point if cache is enabled, so that the set lru_tree is updated, and the
corresponding block’s tag and valid bits are updated.

The load/store execution stages must also track data cache accesses and hits for statistics purposes.
Load and store instructions must increment the dmem_accesses variable for all load and store
instructions after the incurred latency has passed and the instruction can proceed. Similarly, load
and store instructions must increment the dcache_hits variable on a cache hit. Note: load and
store instructions should only increment dcache_hits and dmem_accesses at most once;
stalls due to memory latency should not count as a cache hit / memory access. When
the data cache is disabled, dcache_hits should always be 0.

3 Deliverable

In addition to the sim_stages.c and project_out.txt files, prepare and submit a PDF report
explaining the branch misprediction rate and the cache hit rate for the different test cases provided to
you for different configurations of Branch Predictor and Cache. Explain why a certain configuration
works better for each test case in your report.

7


	1 Dynamic Branch Prediction
	1.1 Branch Prediction Functions
	1.2 Pipeline Modifications

	2 Data Cache
	2.1 Data Cache Functions
	2.2 Pipeline Modifications

	3 Deliverable

