ECE 3401 / CSE 3302 / ECE 6095 Spring 2020

Digital Systems Design

Tues/Thurs 12:30pm-1:45pm WebEx: https://uconn-cmr.webex.com/meet/omk12001 Meeting Number: 316271782 Join by phone: +1-415-655-0002 US Toll

Course Description: Three Credits. Prerequisite: CSE 2300. Design and evaluation of control and data structures for digital systems. Hardware design languages are used to describe and design alternative register transfer level architectures and control units with a micro-programming emphasis. Consideration of computer architecture, memories, digital interfacing timing and synchronization, and microprocessor systems.

Course Website: http://www.engr.uconn.edu/~omer.khan/courses/ece3401_s20/index.html

Instructor: Professor Omer Khan (khan@uconn.edu) Office Hours: Online via WebEx or Zoom preferably during 11am-Noon on Tue/Thu (make appointment via email)

TA: Mohsin Shan (mohsin.shan@uconn.edu) Office Hours: Online via WebEx or Zoom (make appointment via email)

Textbook (supplemental to lectures): Available through UConn Bookstore Digital Systems Design Using VHDL by Charles H. Roth, Jr. and Lizy Kurian John, 3rd Edition

Software Tools:

This course has a programming component using VHDL software tool-chain. Assignments will include designing and simulating hardware design modules using VHDL. The software is available via UConn AnyWare (Skybox). You can also download Xilinx WebPack using guidelines from https://khan.engr.uconn.edu/courses/ece3401 s20/pas/toolchain guide.pdf

UG Grading Policy*: Programming Assignments (3)	45%
Homework Assignments (~7 to 8)	35%
Midterm Exam #1	20%
GRAD Grading Policy *: Programming Assignments (3)	30%
Homework Assignments (~7 to 8)	20%
Midterm Exam #1	20%
Project	30%

* You must submit all programming assignments. Late assignments will not be accepted. A final letter grade will be assigned using a grade curve.

Tentative Schedule:

Logic Design Techniques and Hardware Description Language VHDL: Design Modeling, Simulation, Synthesis, and Verification State Machine (SM) Charts Microprogramming High Level Design Example of a Microcontroller Memory Design High Level Synthesis (HLS) Programmable Logic Devices Timing Synchronous and Computer-aided Design Verification and Testing of Digital Designs