PA0 Guide

ECE 3401 – Spring 2021

Course TA contact information:
Abdul Raheed Sahni
abdul.rasheed@uconn.edu
UConn AnyWare Login Steps

1. Open https://software.uconn.edu/uconn-software-online/
2. Click on the “Launch school specific desktops” icon under Launch AnyWare
3. Under the VMware Horizon: Enter your NetID as Username, and enter your password
4. When you login, you will be using “Engineering Desktop”. Click on the “Engineering Desktop”, and wait for you to get logged into the VM
5. On the left Window menu, select “Xilinux” at the end of the menu
6. Within Xilinux, click on “Vivado 2020.1” and wait for the tool to open
Start Vivado

Search for Vivado 2020.1
Create a New Project

Click Here on New Project (and let Wizard create a new project)
The project wizard will open. Give any name to your project (e.g. lab0) and leave the rest as is. You can work from your P drive where data is saved across multiple machine logins. Then click next.
The project wizard will open. Give any name to your project (e.g. lab0) and leave the rest as is. If P drive does not let you save your work, then work in the machine’s C drive. Before logging out, copy the project folder in your P drive. On the subsequent login copy the project back to C drive to work on it. Repeat this process across multiple machine logins.
Project Settings

• Select RTL Project, then click next

• And then Finish

Choose RTL Project and click Next
Creating Source Files

Create a new source file

Change to VHDL
Creating Source Files

Select VHDL and type the name. Then click OK.
Creating Source Files

Then click Next
Creating Source Files

Leave the IP and Constraints parts as is
Click Next
Part Selection

Choose the default FPGA xc7k70tfbv676-1
Then click next
Then click finish
The project will then be created
Port Definitions

Leave this part as is and click OK.
You will be adding the port definitions in the VHDL code later.
Start Programming

1. Double-click on ‘lab0 – Behavioral’ for the lab0.vhd file to open in the right panel

2. Copy & Paste the code from lab0.vhd here (It is a 1-bit adder that is downloadable from the course webpage). Save lab0.vhd using Ctrl+S. The left panel should now say BIT_ADDER – BHV under Design Sources
Adding a Test Bench

1. Click here to add a new file

2. Select Simulation Sources here and click Next
Adding a Test Bench

1. Click Create File

2. Add the name of the testbench and click OK. Then click Finish
Adding a Test Bench

1. Click OK
2. Click Yes to ignore the warning. You’ll add the port definitions later
Copy the testbench Code

1. Click Simulation Sources then sim_1, and then double-click on ‘test0 - Behavioral’ for the test0.vhd file to open in the right panel.

2. Copy & Paste the code from test0.vhd here (It is a 1-bit adder that is downloadable from the course webpage). Save test0.vhd using Ctrl+S. The left panel should now say TEST_ADD – TEST under Simulation Sources and sim_1.
Click on Run Simulation, and then Run Behavioral Simulation
Behavioral Simulation

- A waveform window should automatically open after you click Run Simulation
- Enables one to visualize waveforms for the digital design
 - Runs for the time specified in the test bench
 - Allows one to visualize interface as well as internal state of the simulated design
 - Simulates input configurations specified in the test bench
Running the Simulation

These interface signals should automatically appear

Click to Zoom Fit
Check Waveform

- You should study lab0.vhd code and then understand how test0.vhd sensitizes inputs to create a testbench to test the 1-bit adder circuit.
- The SUM and COUT outputs can be verified by visually inspecting the A, B and CIN inputs at various timestamps.