University of Connecticut
ECE 3401: Digital Systems Design
Spring 2024

Programming Assignment 1:
Design of Parallel ALUs with Feedback

Due February 16, 2024 (Friday) @ 11:59 PM on HuskyCT

1 Introduction

This programming assignment will require you to design a system with two ALUs that can
perform arithmetic operations on 16-bit operands in a parallel design. Operands either come
from external 16-bit inputs or feedback from one of two registers. This assignment has the
following functionality:

e The following ALU operations:
— 16-bit addition
— 16-bit subtraction
— 16-bit multiplication
— 16-bit shift-right-logical
e Logic to control arithmetic operations, based on a select input.
e Logic to control ALU and 32-bit register inputs using multiplexers.

e Verification of the design using a test bench.

2 Description

The figure below shows the architecture of the system:

alul_sel
A[15:0] el X rl_en
ml_se
E . |Q 21[31:0]
B[15:0
[15:0] | s = R1
10 Y /\
“g’—— 11
alu2_sel
C[15:0] X r2_en
m2_sel >
> E — Z2[31:0]
D[15:0] —
[] 00 16 N R2
01
10 Y
lloll 11
reset
clk

Overall Design of PA1

The ALU operation of the inputs and values stored in the assigned register bank are per-
formed continuously. A[15:0], B[15:0], C[15:0], and D[15:0] serve as external input
signals to the system, and are 16-bits wide. The arithmetic logical units ALU1 and ALU2
have operations controlled by the alul_sel and alu2_sel signals, which are described in
table 1 below:

Table 1: ALU Operation Selection

alul sel / alu2 sel | OPERATION

00 addition (X +Y)

01 subtraction (Y - X)

10 multiplication (X * Y)
11 shift-right-logical (Y » 1)

The r1_en and r2_en signals control the 32-bit registers R1 and R2. When ‘1,” the register

2

should propagate the value from D — Q on the rising edge of clk. Otherwise, the register
should instead hold the old value of Q.

The register reset signal reset asynchronously clears the values of R1 and R2. When brought
to a ‘1,” the values held by R1 and R2 are set to 0 regardless of the clk signal. When the
signal is ‘0,” the registers operate normally. The reset signal should remain ‘0,” except when
you need to clear the outputs of the registers. Initially, the register output values should be
‘0’ by asserting the reset signal at the beginning of simulation.

There are also two 4:1 MUX units with control signal m1_sel and m2_sel. ml_sel selects
input Y to ALU1, while m2_sel selects input Y to ALU2. For both MUXes, the select signals
ml_sel and m2_sel operate as follows:

e sel = “00” : selects C[15:0] for ALU1 or D[15:0] for ALU2 as the input.
e sel = “017 : selects self ALU feedback as the input.

e sel = “10” : selects alternate ALU feedback as the input.

e sel = “117 : selects a zero vector as the input.

Each ALU is expected to perform an unsigned integer add, subtract, multiply, and shift-right-
logical operation. We do not require structural VHDL for these operations. You should use
behavioral operators and the appropriate IEEE libraries for your design. One design option
is to use constrained unsigned to represent the input operand (i.e. A: in unsigned (15
downto 0); for the A operand) and use IEEE.numeric_bit.all library.

The register output values, Z1 and Z2, are 32-bit buses. As mentioned above, the values
of the multiplexer select signals determine which outputs to use for the ALU1 and ALU2
alternate inputs. The lower 16-bit output of each register bank is connected to the inputs
of the multiplexers (i.e. any ALU input signals coming from register outputs need to be
truncated appropriately to match the 16-bit widths of each ALU input). Keep in mind we
do not consider overflow in the design of our digital system, so these conditions may be
ignored.

You will use separate VHDL modules for i) the register bank (dff.vhd) ii) the ALU (alu.vhd)
and iii) the overall PA1 module (pal.vhd). You are given top-level modules with entity in-
stantiations, and you are expected to write the architecture for each module. In the pal
module specifically (pal.vhd), you are given the architecture declaration, signal definitions,
and entity instantiations, and you are required to fill in the logic for each signal and the
port maps for each of these entity instantiations. Note, entity instantiation is an alternative
way to instantiate modules. You can read more about entity instantiation and how it works
compared to component instantiation here. It is recommended that you use explicit port
connection definitions in your port map definitions, which was used exclusively in the exam-
ples from the hyperlink provided above. You will be graded on the design of these modules
and their functionality.

https://vhdlwhiz.com/entity-instantiation-and-component-instantiation/

3 Test Bench

A good design develops a test bench. Complete the following simulations using test benches
testbenchl.vhd and testbench2.vhd. The first test bench is provided and described in
section The second test bench in section gives you a high level function that you
need to implement. You should use testbenchl.vhd as a reference to help you when writing
your own code in testbench?2.vhd.

3.1 Calculating Parallel Summation with a Test Bench

In the provided example test bench (testbenchl.vhd) we use the digital design to find the
value of two different summations in parallel. The summation formula used is as follows:

n

fmy =3 i=) 0

: 2
=1

When you are finished writing each module (dff.vhd, alu.vhd, and pal.vhd), simulate the
design using testbenchl.vhd. To select the current simulation, right click “testbench1” and
select “set as top” (it should be bold). In the test bench, the ALU1 computes f(3) and
ALU2 computes f(5). After testing and confirming the result, feel free to change the values
of the defined constants (lines 30, 31, and 32 in testbenchl.vhd) to different values. The
description of the testbench is below:

e Reset the system so R1 and R2 are zero. Set the inputs A <+ 3, B« 1, C < 5, and
D < 1. Set up the MUXes and ALUs so that R1 < A + B and R2 <— C + D. Wait one
clock cycle (R1 =3+ 1 and R2 = 5+ 1).

e Set up R1 <— A - Z1 and R2 < C - Z2. Wait one clock cycle (R1 = 3-4 and R2 = 5-6).

e Set up R1 - Z1 >> 1 and R2 < Z2 >> 1. Wait one clock cycle
(R1 = —(3)2(4) R2 = —(5)2(6)). Done!

Keep in mind that the R1 output is mapped to Z1 and R2 is mapped to Z2, so these
are the signals you should observe in your simulation. For in-depth details on how this
is implemented using the designed system, read through testbenchl.vhd. Comments are
provided for you to follow the test bench flow as a tutorial.

3.2 Parallel Formula Calculation

For a certain calculation, you need to calculate the following equation:

You now want to use your digital design to efficiently compute ¢ using the skeleton test
bench testbench2.vhd. Assuming the input mapping of A < a, B < b, C <— ¢, and D < d,
you are to compute the output of g(a,b,c) and g(c,d,a) in the minimum number of cycles

by taking advantage of the parallel hardware. Note the following restriction: you may not
change the input mappings. In other words, your design should work correctly no matter
if a, b, c or d is numerically changed.

Using equation [2 and your completed digital design, compute the outputs of both g(a,b, ¢)
and g¢(c,d,a) using the pre-defined values of a = 5, b = 6, ¢ = 7, and d = 8 using the
skeleton test bench testbench2.vhd to write your code. Although you are only responsible
for showing the predefined simulation, you are free to try using different input values of
a, b, c or d by modifying the constant assignments starting at line 33. Remember that you
cannot modify A, B, C, or D after the assignments, but all other control signals (MUX select,
ALU select, register enable, and reset) may be changed at any point, unrestricted (Hint:
sketch out the data flow required for the calculation first, and write out what values are
accumulated at each clock cycle. Then, translate it to test bench control signals to get the
desired behavior). The desired outputs can appear on either Z1 or Z2, but both g(a, b, ¢) and
g(c,d,a) outputs must be shown at some point together. It will help to first read through
the testbenchl.vhd code and comments to understand the PA1 test bench flow.

To earn the maximum number of points for the testbench you must (i) ensure it is functionally
correct and (ii) finish both calculations in 5 cycles total. You will still get partial credit if
more cycles are needed and the correct outputs are computed.

4 Deliverables

Please submit the following report saved as a single PDF"

1. Your code for each module and your second testbench. You can copy and paste the
code into a Word document; make sure to clearly label each code block.

e alu.vhd
e dff.vhd
e pal.vhd
e testbench?.vhd
2. Submit screenshots of the following:

e Your output waveform of testbenchl.vhd using. Show the waveform from Ons
to 100ns. The clk, reset, control, input, and output signals should all be clearly
visible. The bit vectors A, B, C, D, Z1, and Z2 should also be unsigned decimal
radix (check the adding signals to waveform guide if you need help formatting or
changing the radix).

e Your output waveform of testbench2.vhd computing g(a, b, ¢) and ¢(c, d, a) using
the default values of a =5, b =6, ¢ =7, and d = 8. Show the waveform from Ons
to 150ns. If it takes longer that 150ns to compute your output, show enough of
the waveform to clearly show the result (multiple screenshots are fine). Format
all the waveform signals the same way as the previous test bench.

	Introduction
	1 Introduction
	2 Description
	3 Test Bench
	3.1 Calculating Parallel Summation with a Test Bench
	3.2 Parallel Formula Calculation

	4 Deliverables

