
University of Connecticut
ECE 3401: Digital Systems Design

Spring 2024

Programming Assignment 2:
A Row-wise Matrix Multiplication Design

Due March 22, 2024 (Friday) @ 11:59 PM on HuskyCT

1 Introduction

In this assignment, we will perform the multiplication of two matrices A and B, and output the
calculations to a third matrix, C. The goals of this assignment are to:

• Become familiarized with VHDL array data types.

• Implement a state machine in VHDL.

• Use test benches to verify the correctness of a design.

Section 2 reviews introductory-level linear algebra. Section 3 discusses the overall assignment.
Section 3.1 discusses the state machine in depth. Section 4 discusses the test benches. Finally 5
summarizes the deliverable to submit.

You are given a file matrix.vhd, which contains the matrix_2x4, matrix_4x3, and matrix_2x3
types for use in the source files. You do not need to modify this file. pa2.vhd contain skeleton code
that you need to complete. The entirety of the state machine in contained within pa2.vhd. You are
also provided with one test bench smtest.vhd which is partially complete. More details are given
in 4.

2 Background

In this assignment, the first matrix A can be dense or sparse, meaning that the elements in the
matrix can have mostly non-zero or zero elements respectively. A is fixed to a 2x4 (two rows and
four columns) matrix. B is a dense matrix. B is fixed to a 4x3 matrix. The output matrix contains
the same number of rows as A and the same number of columns as B; thus, the output matrix C
is 2x3. The format of the two input matrices A and B, and the output matrix C is shown:

A =

[
a11 a12 a13 a14
a21 a22 a23 a24

]
B =


b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43

C =

[
c11 c12 c13
c21 c22 c23

]

2.1 Row-Wise Multiplication

Row-wise multiplication uses a different approach than the classical approach 1. In the row-wise
multiplication, all non-zero scalar elements of each row of matrix A are multiplied with all elements of

1https://en.wikipedia.org/wiki/Matrix_multiplication

1

https://en.wikipedia.org/wiki/Matrix_multiplication


the corresponding rows of matrix B, where the row index of matrix B is determined by the column
index of the non-zero value from matrix A. The results are accumulated in the corresponding
elements of the row of output matrix C, as shown below:

C[i, :] =
n∑

j=1

A[i, j] ·B[j, :] (1)

where C[i, :] is the ith row-vector of matrix C. The algorithm iterates over each non-zero element
A[i, j] of matrix A and performs a scalar-vector multiplication with B[j, :], which is the jth row-
vector of matrix B. Note that all rows of the output matrix C need to be computed for this
matrix multiplication. The detailed algorithmic pseudocode for row-wise multiplication is shown in
Algorithm 1.

Algorithm 1 Row-wise Matrix Multiplication of A and B

procedure MatMult(A,B,C)
for i = 1 to 2 do . iterate through rows of A

for j = 1 to 4 do . iterate through columns of A
if A[i, j] 6= 0 then . Skip matrix multiplication if the element of A is non-zero

for k = 1 to 3 do . Iterate through the columns of B
prod_reg = A[i, j] ·B[j, k] . Update element-wise multiplication in a register
C[i, k] = C[i, k] + prod_reg . Accumulate and update the output

end for
end if

end for
end for
return C

end procedure

2.2 Row-Wise Multiplication Example

Given the following A and B input matrices:

A =

[
1 0 0 4
0 0 7 0

]
B =


1 2 3
4 5 6
7 8 9
10 11 12


The implementation of the algorithm must first initialize the output matrix C with zeros during
the reset process. This is done to ensure that the accumulations can be performed directly in the
C matrix:

C =

[
0 0 0
0 0 0

]
The first non-zero of A is a11 = 1. It is in the first row and the first column of A. The row
number corresponds to the row of C that will get updated. The column number corresponds to the
row-vector of B that will get multiplied. So, the a11 scalar is multiplied by the first row row-vector

2



of B, and this result is accumulated in the first row row-vector of C:

C =

[
0 + (1)(1) 0 + (1)(2) 0 + (1)(3)

0 0 0

]

The a12 and a13 elements are zeros, so their computations are skipped. The next non-zero is a14 = 4
which is in the first row and the fourth column of A. So, the a14 scalar is multiplied by the
fourth row row-vector of B, and this result is accumulated in the first row row-vector of C:

C =

[
1 + (4)(10) 2 + (4)(11) 3 + (4)(12)

0 0 0

]

At this time, the computations for the first row of A have completed, the algorithm iterates to the
second row of A for processing. In the second row of A, the only non-zero is a23 = 7 which is in
the second row and the third column of A. So, the a23 scalar is multiplied by the third row
row-vector of B, and this result is accumulated in the second row row-vector of C:

C =

[
41 46 51

0 + (7)(7) 0 + (7)(8) 0 + (7)(9)

]
Since there are no remaining rows to be processed in A, the algorithm is done, and the final result
of the multiplication is stored in matrix C.

C =

[
41 46 51
49 56 63

]

3 Design Overview

You will implement the 2x4 times 4x3 row-wise matrix multiplication Algorithm 1 in VHDL by
using a state machine to sequence the operations. The vector multiplication / addition is performed
one element at a time.

3.1 State Machine

The state machine implementation is a Mealy state machine. The entirety of the state machine is
defined in pa2.vhd, and each input / output signal to the module is mapped to the external signals
to the test bench.

You are responsible for completing the transition and output logic of each state. You are not
allowed to add additional signals to the architecture. The reset functionality is also provided in
the pa2.vhd file and should not be further modified.

3



PA2 module FSM signal interface.

There are four states: IDLE, NONZ, MULT, and ADD. These states are used to implement Algo-
rithm 1. Throughput this discussion, refer back to the algorithm for more details. On each rising
edge of the clk signal, the state machine transition process should be invoked. The states of the
SM are described below:

State machine states and incomplete transition edges.

• IDLE: This is the starting state of the SM. The SM remains in IDLE until the start signal
is asserted. Once this happens, the iterators i, j, k are initialized, and the SM transitions to
NONZ. When start is not asserted in IDLE, the SM remains in IDLE.

• NONZ: The current element of A is checked based on the corresponding i and j signals. If
the element is zero, then multiply - add processing is skipped for it. The logic for i, j, and
k must be set properly and the SM may transition to IDLE if the algorithm is done with its
computations.

If the element of A is non-zero, then the SM must proceed with the multiply - add sequence
for the corresponding row-vector of B. The logic for i, j, and k must be set properly before
transitioning to the next state, MULT.

• MULT: For the non-zero scalar A and an element of vector B, the multiplication output is
stored in the prod_reg register. The SM then transitions to the ADD state. The logic for i,
j, and k must be set properly before transitioning to the next state, ADD.

4



• ADD: The product stored in prod_reg is accumulated into the corresponding element of C.
The state machine either (1) transitions back to IDLE if all computations for matrix A have
completed, or (2) transitions back to MULT to operate on the next element of the row-vector
B being processed, or (3) transitions back to NONZ to start operating on the next element of
matrix A. The logic for i, j, and k must be set properly before transitioning to the next state.

When transitioning back to the IDLE state, the SM must assert the ready signal to indicate that
the algorithm has completed and the results are ready in the matrix C.

4 Test Bench

The skeleton of the test bench smtest.vhd is given. Within smtest.vhd, constant compC_1, compC_-
2, and compC_3 matrices are defined with the expected output of various multiplications. Prior to
beginning different matrix multiplications, the inputs A and B are modified to different values. You
are required to fill in the testbench process to do the following:

After each start of the SM, using for loops, iterate through the completed output C and corre-
sponding comparison matrices to confirm the correctness of your design. Use assert to verify that
all the corresponding elements are equal (compC_1, compC_2, and compC_3 are used for the first,
second, and third multiplication, respectively). If any elements do not match, you should report
an error message with a severity level of “FAILURE" (this will cause the simulation to stop at the
problematic entry). In the event of a failure, you will need to debug your state machine. If the loops
without any failed assertions, you should report an enthusiastic success message to the console.

5 Deliverables

Please submit a single PDF containing the following:

1. Your completed code of the following:

• pa2.vhd

• smtest.vhd

2. The following screenshots:

• The output waveform from smtest.vhd from 0ns - 1050ns. Ensure that A, B, C, start,
clk, reset, ready, state, i, j, and k are visible. You will need to add state, i, j, and
k to the window from pa2, as it will not appear by default. Instructions are here. It is
okay if the final matrix C / each state is not visible in this screenshot.

• The output waveform windows of smtest.vhd from 0 - 250ns, 250 - 500ns, 500 - 750ns,
and 750 - 1050ns. Show the same signals as in the previous one. For these screenshots,
ensure that every state in this range is clearly visible.

• A screenshot of the TCL console with your report messages.

5

https://khan.engr.uconn.edu/courses/ece3401_s24/pas/adding_signals_to_waveform.pdf

	Introduction
	1 Introduction
	2 Background
	2.1 Row-Wise Multiplication
	2.2 Row-Wise Multiplication Example

	3 Design Overview
	3.1 State Machine

	4 Test Bench
	5 Deliverables

