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Abstract—Simulation for performance modeling of computer architectures is a compute intensive 
operation requiring many compute resources and CPU cycles. Typical usage models involve running 
multiple sequential jobs across multiple machines. Multithreading can be used to speed up individual 
simulation jobs, but only provides higher throughput than multiprogramming on large workloads if 
speedup scales linearly or superlinearly with the number of threads. Scalable multithreading performance 
requires effective parallel decomposition of models to eliminate sequential bottlenecks, and minimizing 
contention on mutual exclusion locks. Scheduling of parallel work is also crucial, and several scheduling 
algorithms are evaluated. Application-level dynamic scheduling delivers superior speedup than generic OS 
scheduling with thread oversubscription, on complex models. Cache affinity scheduling improves 
performance stability of dynamic scheduling. Lookahead execution improves multithreading speedup by 
reducing barrier synchronization overhead, without requiring speculation and rollback/recovery. 
Combining these techniques can yield superlinear multithreaded speedup, which results in higher 
throughput of large-scale simulation workload on distributed compute grids. Our results on a 1024 cores 
simple processor model indicates that efficient multithreading can yield up to 4X the throughput as job-
level parallelism.   

I. INTRODUCTION 
Simulation is a crucial tool in the practice of 

computer architecture and design, and is used 
extensively in high-level architecture design early in 
the design cycle, in detailed RTL design and 
validation, and in post-silicon design validation and 
debug.  Corporate computing installations have 
evolved over many decades from large mainframes 
in the 1960s and 70s, to department-oriented 
minicomputers of the 1980’s and 90’s, and today are 
being supplanted by large rack-mount installations 
of low-cost “blade” servers providing distributed 
computational capabilities. At the same time, recent 
trends in integrated circuit manufacturing are forcing 
chip vendors to pack more CPU cores onto each die, 
rather than increase clock speeds or single-CPU 
instruction rate to improve performance. With an 
ever-increasing degree of available hardware 
parallelism in the computing infrastructure, and in 
particular with an increasing degree of relatively 
easy-to-use shared-memory parallelism available in 
modern compute nodes, it is reasonable to ask 
whether the use of parallel processing software 
techniques within individual simulation jobs is a 
useful and necessary tool to make maximum use of 

evolving computational capabilities of modern blade 
server grids. 

Given an experimental workload consisting of J 
jobs, and a compute grid containing H host nodes 
with C processor cores each, and assuming J > H*C, 
and that each job could be run either sequentially on 
a single core, or in parallel using up to C cores, if we 
want to maximize core utilization, we can choose to 
use only job-level parallelism, or combine some job-
level parallelism with parallel processing of each job 
on a server (thread-level parallelism in the sequel).  
Job-level parallelism is easy to exploit since it does 
not require the simulation software to run 
multithreaded. As the number of jobs per host 
increases, the virtual, physical, or cache memory 
usage also increases proportionally. 

If we exploit thread-level parallelism, the speedup 
obtained by running a single job using from 1 to C 
threads on a single host may also be sub-linear, due 
to additional instructions required to manage and 
schedule parallel tasks, contention on locks, load 
imbalance and waiting time at barriers, etc. It may 
also exhibit superlinear behavior on some region, 
because the smaller memory and cache footprint of 
each thread could result in better cache locality and 
hit rate than the sequential program [25][26]. The 
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memory usage will be close to flat, with perhaps a 
small increase as the number of threads is increased, 
for additional thread stack frames, synchronization 
data structures, etc. Thread-level parallelism can be 
an attractive supplement to job-level parallelism, 
under several circumstances:  first, if the speedup of 
running a job with N  parallel threads exceeds the 
throughput increase of running N jobs concurrently; 
and second, the lower memory usage with thread-
level parallelism could be exploited by spending a 
smaller fraction of the compute grid capital budget 
on memory and more on additional host nodes or 
more cores per node (cf. the discussion of speedup 
versus costup in [24]). 

To motivate this work, Tables 1 and 2 illustrate 
typical simulator performance observed on our 
detailed core models.  In Table 1 we ran either a 
single copy or eight copies of our detailed 
performance simulator on an 8-core host machine.  
Throughput does not scale perfectly with the number 
of jobs, achieving a throughput of only 6.68 with 8 
concurrent jobs, which represents an efficiency of 
only 83.5%.  Table 2 shows measurements of the 
same detailed performance model as a single 
multithreaded job on the same 8-core host.  
Although the simulator runs up to 4.02 times faster 
with eight threads, improving individual job 
turnaround times, this represents an efficiency of 
only 50.3%, meaning that less throughput is 
achievable on workloads with large numbers of jobs.  
Improving the multithreaded performance of our 
simulators is an on-going effort, requiring many 
man-hours of software engineering to analyze, 
optimize and restructure the code, due to the large 
size of the software codebase which has been in 
development for many years. 

Table 1. Complex model multi-programmed 
performance on 8-core host 

jobs throughput efficiency 
1 1.00 100.0% 
8 6.68 83.5% 

Table 2. Complex model multithreaded 
performance on 8-core host 

threads speedup efficiency 
1 1.00 100.0% 
2 1.64 82.0% 
4 2.74 68.5% 
6 3.51 58.5% 
8 4.02 50.3% 

A key question we seek to address in the work 
presented here is whether multithreading software 
techniques used within individual simulation jobs 

can deliver comparable or better performance than 
simply farming out multiple jobs onto the many 
available cores on a server grid. In this work, we 
argue that achieving superlinear speedup in 
multithreaded simulations is not only desirable, but 
necessary in order to provide higher throughput for 
typical performance modeling workloads compared 
to simply using job-level parallelism.  We show that 
a series of improvements is necessary, in the 
organization and characteristics of the performance 
models, as well as in the performance modeling 
infrastructure.  These include: optimizing shared 
data structures in the model code to eliminate or 
minimize locks and contention; an effective parallel 
decomposition that exposes sufficient parallelism 
and minimizes sequential bottlenecks and load 
imbalance; and exploiting long latencies in the 
model to allow lookahead execution; dynamic 
scheduling using a work queue managed at the 
simulator application level; “unfair” LIFO-ordered 
task queueing; and cache affinity scheduling. Our 
results indicate that perhaps superlinear 
multithreaded speedup is achievable (up to 12X on 
an 8 core host machine). This non-speculative and 
efficient multithreading results in up to 4X 
throughput of using job-level parallelism to speed up 
software simulations of future multi-core processors. 

II. RELATED WORK 
Researchers in computer architecture have 

explored the use of parallel simulation from the mid 
1980s [5][6][7][8][9][10][16][17]. Early work in 
software infrastructures was motivated by the need 
to model large-scale parallel systems [10][14][15], 
and recently there has been a resurgent interest due 
to the need to model chip multiprocessors [13][18]. 
Vachharajani, et al. explored how a performance 
simulator can be automatically parallelized, if the 
model is structured appropriately [18]. Fujimoto 
classified parallel simulation approaches into 
conservative techniques (e.g. [5]) and optimistic 
ones (e.g. Time Warp, and related approaches 
[8][9][17]), depending on how aggressively 
communication dependencies are enforced among 
parallel tasks [7]. The work presented here uses 
conservative parallel simulation, but attempts to 
exploit lookahead for relaxed synchronization based 
on the ideas in this early work. 

Recently, parallel simulation has been used in the 
industry (Barr, et al. [4]). Our infrastructure on 
parallel simulation largely borrows from this 
previous body of research and particularly from 



 

Barr, et al.’s work on paralleling Asim [2][3]. 
However, we discovered that we needed two key 
techniques—lookahead execution and dynamic 
scheduling—to obtain effective speedups in a 
general parallel infrastructure that can support 
multiple products and projects. 

Although our implementation of dynamic 
scheduling is based directly on POSIX threads 
(pthreads), we build upon many of the ideas of 
Reinders [1], in particular the notion of unfair 
scheduling to promote effective use of caches . 
While the Threading Building Blocks library must be 
sufficiently general to support many kinds of parallel 
applications, our software infrastructure is aimed 
specifically at detailed microarchitecture 
performance modeling, and we have been able to 
keep the details of parallel programming largely 
transparent to model code developers. 

An alternate way to improve simulation speed is 
to create a performance model in an FPGA rather 
than software  [11][12][13]. Although FPGAs can 
provide orders of magnitude improvement in 
simulation speed, they are still hard to program. The 
research community is actively looking at how to 
make this task simpler. Until FPGAs are easy 
enough to program or performance models in 
FPGAs are easy to change, software simulation will 
continue to be the key vehicle for simulation in the 
industry. Our techniques apply to such simulators as 
well. 

The prior work on parallel simulation has focused 
primarily on techniques to speed up individual 
simulation runs. It appears that little attention has 
been given to date to the bigger picture of large-
scale industrial workloads. In this paper we argue 
that it is imperative to take this large workload 
context into account, because there is an inherent 
tradeoff between parallel processor resources being 
employed for running multiple simulation jobs 
versus running parallel threads of a single job. We 
focus not only on the speedup of individual runs, but 
on obtaining higher throughput for the workload as a 
whole. We argue that superlinear speedup is 
necessary to achieve this goal, and demonstrate the 
feasibility of this by using a combination of practical 
parallel software techniques. 

III. DECOMPOSITION FOR MULTITHREADED 
MODELS 

Accurate industrial-quality simulators have very 
large source code bases often exceeding millions of 
lines of code, and incurring a significant memory 

usage at runtime.  The need to model multicores and 
products with large on-board caches and memories 
also tends to increase the memory footprint of 
simulators. In order to deal with the software 
engineering challenges of constructing such accurate 
and complex models, a structured approach must be 
taken wherein the software is organized into 
modules, loosely corresponding to the underlying 
hardware organization, and allowing the software 
modules to be developed independently, and 
different versions of modules to be interchanged in 
order to explore design variations, and exploit 
speed/fidelity tradeoffs [2][18]. Communication 
between modules is constrained to use specialized 
software constructs called channels or ports, and 
modeling languages such as VHDL, SystemVerilog 
or SystemC have specialized classes or software 
interfaces for this [22]. 

The organization of the model into modules and 
ports provides an obvious opportunity for parallel 
decomposition [23]: If the simulator software is 
organized isomorphically to the hardware, this 
parallelism is exposed in the form of software 
modules that can be run in parallel [4]. The 
characteristics of ports play an important role too, 
since port communication creates runtime 
dependencies that must be preserved for correct 
parallel execution [5][7]. 

If the ports connecting modules have more than 
one cycle of latency, e.g. because they model fixed-
delay pipeline structures or long distance 
propagation delay lines across regions of a chip 
under design, the synchronization requirements for 
these modules is even looser, allowing, e.g. the 
consumer side to “run ahead” of the producer side, 
as long as it does not run so far ahead that it misses a 
message sent by the producer. This is called 
lookahead and can be exploited to reduce 
synchronization requirements and expose more 
parallelism to the thread scheduler in multithreaded 
simulations. Note that exploiting lookahead while 
preserving data dependencies still falls under the 
umbrella of conservative parallel simulation [7][14];  
in this work, we do not consider optimistic 
approaches (e.g. [9]). 

IV. SCHEDULING 
There are several ways to exploit the degree of 

parallelism in the software (referred to in the sequel 
as the number of parallel tasks) on the parallelism 
available in the host hardware (the number of host 
cores).  If the hardware parallelism exceeds that of 



 

the software then we can simply create one worker 
thread for each parallel task, and allow the host 
operating system to assign one worker thread to 
each host core.  We call this static scheduling.  To 
use static scheduling, we may have to alter our 
parallel decomposition to keep the number of tasks 
from exceeding the number of host cores, e.g. by 
changing the number of simulator modules assigned 
to each task. If the software parallelism exceeds that 
of the hardware, then two different strategies are 
possible: we could create one worker for each task, 
and allow the operating system to manage the 
assignment of worker threads to host cores, referred 
to as thread oversubscription [1].  Alternately, we 
could create only one worker thread per host core, 
and manage the assignment of tasks to workers in 
our simulation software, referred to in the sequel as 
dynamic scheduling.  Our dynamic scheduler can be 
more intelligent than the operating system’s generic 
thread scheduler, by exploiting information available 
to it about the simulator (e.g. the number, duration, 
or interdependencies among tasks). 

Several variations of dynamic scheduling work 
queue management are possible. In first-in-first-out 
(FIFO) queuing, tasks are reinserted into the queue 
in the order they arrive, while with last-in-first-out 
(LIFO) queuing, the last task enqueued will be the 
first dequeued by the next available worker thread. 
Although FIFO queuing would appear to be more 
“fair” to tasks, LIFO queuing has two possible 
advantages: First it allows the longest-running (or 
rather, the last-finishing) task in a cycle to be the 
first to execute in the next cycle. Secondly, it 
increases the likelihood that a given worker 
immediately re-executes the same task in the next 
cycle, thus taking better advantage of temporal 
locality in the host core’s cache. It has been 
observed elsewhere that such “unfair” scheduling 
policies can have significant performance 
advantages [1]. 

A further refinement aimed at exploiting cache 
locality is to explicitly keep track of which worker 
previously executed each task. To fetch the next 
task, each worker scans the queue starting at the 
head, and dequeues the first ready task that it 
previously executed. If no such task is found, it 
dequeues from the head.  This scheme is referred to 
as task affinity scheduling. 

The barrier synchronization at the end of each 
simulated clock cycle can be relaxed to allow 
lookahead as follows. A worker uses any of the 
algorithms described above to enqueue and dequeue 
tasks, but instead of strictly waiting at the barrier for 

all other workers to finish the same simulation cycle, 
it executes the dequeued task as long as its 
simulation cycle does not exceed the slowest 
“straggler” task’s last completed cycle by more than 
the lookahead time, i.e. one cycle less than the 
minimum latency on any port connecting modules in 
different tasks. If the scheduler has knowledge of the 
module connectivity, the lookahead time can be 
further relaxed from a global value to a function of 
just those modules a task actually receives messages 
from; or the synchronization can further deferred 
until the task actually attempts to read data from its 
ports (port-based synchronization  [4][11]). In the 
work presented here we have used only global 
lookahead enforced by barrier synchronization. 

V. EXPERIMENTAL SETUP 
Our experience running production-quality 

performance models with thread-level parallelism 
successfully yielded speedup compared with single 
sequential runs, but significantly less than job-level 
throughput on our highly utilized compute grid. 
Preliminary analysis pointed to several factors 
limiting the achievable speedup: first, making the 
large legacy software code base thread-safe required 
the addition of numerous locks, which incurred 
significant overhead and thread contention at 
runtime; and second our initial task decomposition 
of the model resulted in significant load imbalance 
among tasks because the model of the on-chip 
interconnect was more difficult to decompose into 
parallel tasks than the multiple on-chip core models. 
We believed both of these factors could be 
addressed with sufficient software engineering effort 
to restructure the code to eliminate shared data and 
locks and expose more parallelism. But before 
committing to this effort, we wanted to understand 
whether superlinear speedups are achievable, 
yielding higher throughput with multithreading, and 
in understanding what further changes would be 
needed to the infrastructure and models to achieve 
this. To investigate this, we have built several 
performance models that are simpler in some aspects 
than our full production model, while preserving 
other essential details and utilizing the same 
performance modeling software infrastructure. 

Our first simplification, which we will refer to as 
complex core, no interconnect (CCNI), and shown 
in Figure 1, consists of a model of a P-way 
multicore chip (which we will refer to as the target 
architecture, to distinguish it from the host 
architecture that runs our model), where the 



 

performance model of the target core is of similar 
complexity and fidelity as Intel® Core 2™-like full 
production model. In particular, we made no attempt 
to eliminate the many locks, due primarily to the 
complex instruction set functional model. Unlike the 
full production model, CCNI contained only a trivial 
model of the target on-chip interconnection network, 
which we believed would eliminate the primary 
source of load imbalance in the production model.  
The number of target cores P is a parameter that we 
can vary.  The simplest parallel decomposition for 
this model is to assign one target core to each 
parallel task.  If P is larger than the number of host 
cores, we can assign more than one target core to 
each task if we want to statically schedule the tasks. 
Moreover, since  CCNI does not accurately model 
the on-chip interconnect and the core modules do 
not communicate over ports, the allowable 
lookahead between core tasks can be made 
arbitrarily large for purposes of investigating its 
effects on speedup.  In a more realistic model, 
lookahead would be limited by the amount of core-
to-core or core-to-network latency, but latencies in 
the range of five to ten target core clock cycles or 
more are not implausible, depending on the fidelity 
required of the target network model. 
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Figure 1.  Complex Core, No Interconnect (CCNI) 

model 
For the CCNI model, we use application traces 

from the SPEC 2000 and 2006 suites generated 
using the Pintool [27]. We run duplicate copies of 
the same trace for each target core, providing the 
worst-case workload as all threads will need the 
same resources. Unless otherwise noted, we run 
each trace for 1 million instructions after warming 
up the cache state. This results in simulating P 
million total instructions on a P-way multicore 
model. Simulation is guaranteed to run in a 
deterministic and repeatable fashion for both 
sequential and multithreaded versions of our 
experiments.  

Next, in order to completely eliminate the effects 
of multithreading locks, we implemented an abstract 
version of a core model. It consists of several 

random number generators used to model a very 
simple processor pipeline, with only three generic 
instruction types: non-memory, memory-read, and 
memory-write. Pseudo-random (but deterministically 
repeatable) random instruction streams are generated 
by each core model, and the memory read/write 
instructions exercise an on-chip interconnection 
network model.  The first of these models contains a 
simple monolithic interconnection network queuing 
model, referred to as simple core, monolithic 
interconnect (SCMI), and shown in Figure 2.  
Although the cores are very simple, it is easy to 
scale the model to very large P to increase the 
workload and experiment with alternative parallel 
decompositions and scheduling schemes. The 
latency L between the target cores and the target 
interconnect is a parameter that can be varied, 
allowing us to explore lookahead values from zero 
to L-1. 
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Figure 2.  Simple Core, Monolithic Interconnect 
(SCMI) model 
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Figure 3.  Simple Core, Scalable Interconnect 

(SCSI) model 
Although SCMI does not contain any locks (other 

than a small number of carefully optimized locks in 
our simulation kernel), the monolithic interconnect 
model does present a source of load imbalance, 
especially with large P.  Our final model replaces 
this with a more scalable ring-network model, 
consisting of separate ring slice segments, with one 
slice per target core, as illustrated in Figure 3.  
Parallel decompositions of this model place one 
target core and ring slice into each task, or M 
core/slice pairs for each task (M=2..P) if required for 
static scheduling. The latency L of ports between 
ring slices is another model parameter that can be 
varied in order to allow lookahead. This model is 



 

called simple core, scalable interconnect (SCSI). 
Another essential feature of SCMI and SCSI is 

that due to their extreme simplicity, they use much 
less memory per target core than either CCNI or our 
production models. We hypothesized that their small 
memory and cache footprint would make it easier to 
achieve superlinear speedups, by allowing the 
multithreaded program to achieve a better cache hit 
rate by utilizing multiple host core caches 
(superlinear speedup is a well-known phenomenon 
in scientific computing, sometimes observed when 
the sequential version of a program runs out of 
cache or physical memory page frames with large 
problem sizes [25][26]).  If the model code could be 
made more efficient in this way, it would also tend 
to amplify any multithreading overhead and 
contention in our software infrastructure’s scheduler 
that we wished to study. 

All experimental measurements are on host 
systems using Intel Xeon processors with 8 host 
cores running at 2.33 GHz, with 16 GB of RAM and 
4 MB of cache, running a 64-bit Linux 2.6-based 
SUSE distribution. 

VI. EXPERIMENTAL RESULTS 

A. CCNI model basic results 
In the first set of experiments, we measured the 

speedup of the CCNI model to determine whether 
linear or superlinear speedup could be achieved by 
eliminating the load imbalance using a model with a 
simple parallel decomposition (P identical target 
cores). We varied the number of target cores 
assigned to each parallel task to achieve a number of 
tasks between 2 and 33, for a model with P=32 
target cores (in addition to the core tasks, one more 
“default task” is needed in this simulator to parse 
command line arguments and start other tasks 
running, etc.).  

Figure 4 plots the speedup of the CCNI model 
versus the number of tasks. Since the number of host 
cores is 8, static scheduling is in effect when the 
number of tasks is 8 or fewer. Two sets of results are 
shown as the number of tasks exceeds the number of 
host cores: thread oversubscription, and dynamic 
scheduling. As the number of tasks is increased 
beyond 8, our dynamic scheduler continues to 
achieve higher speedups, indicating that it benefits 
from exposing more parallelism in the model 
software. The speedup with thread oversubscription 
quickly drops, likely because the thread scheduler is 
oblivious to what is happening in the model code, 

and attempts to give each worker thread equal time 
even if a worker is only spin-waiting on a lock or 
barrier synchronization. The dynamic scheduler 
never waits at a barrier as long as there are active 
tasks in the queue, and worker threads that own 
locks are never swapped out since the number of 
workers equals the number of host cores. 
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Figure 4.  CCNI speedup versus available 

parallelism (8 host cores) 
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Figure 5.  CCNI speedup versus hardware 

parallelism 
Figure 5 shows the performance of the dynamic 

scheduler as the number of workers (or host cores) is 
varied from 1 to 8, with a fixed parallel 
decomposition with 33 parallel tasks (32 core tasks 
and one default task). With a small number of 
workers (1 or 2), the speedup is superlinear, but as 
the number of workers is increased, the parallel 
efficiency (defined as the speedup on N host cores, 
divided by N) drops off, and speedup is only ~6X for 
8 workers. Although plenty of parallelism is exposed 
to the scheduler (33 tasks for only 8 workers), 
performance decreases, primarily due to lock 
contention in the functional model library. 

Next we measured the throughput that could be 
achieved using either job-level parallelism (running 
8 sequential jobs concurrently on an 8-core host) 
versus multithreading (running 8 parallel jobs, one 
after another, on the same 8-core host).  Figure 6 
plots the relative throughput or efficiency, i.e. the 
absolute throughput or speedup divided by the 
number of host cores used, for both job-level 
parallelism and muiltithreading, on our 32-target-
core CCNI model. Note that both job-level and 
thread-level parallelism show decreases in efficiency 



 

(compared to a single sequential run on a single host 
core) as the number of host cores is increased. 
Unfortunately, multithreading is not able to 
outperform job-level parallelism, since the speedup 
is sublinear, which is consistent with the previous 
two graphs. 

B.  SCMI model basic results 
To test our hypothesis that mutual exclusion locks 

in the software limit the speedup of the CCNI 
model, we developed the SCMI with a much simpler 
core model that does not include the complex 
functional model software library. Similar to our full 
production model, it does contain a nontrivial model 
of the on-chip interconnect and the interconnect 
model runs in a single parallel task. To compensate 
for the much simpler cores compared to CCNI, we 
increased the number of target cores from 32 to 
1024 in our experiments, and we used a core-
interconnect latency of 6 cycles to allow for up to 5 
cycles of lookahead. 

Results presented in Figure 7 show very good 
speedups when the number of tasks is small (five 
tasks or less), with superlinear speedups when 3 to 5 
worker threads are used. As we increased the 
number of workers beyond 4, however, the 
performance quickly saturated at ~6X. We compare 
various scheduling options when tasks exceed the 
host cores, by assigning fewer and fewer of the 1024 
target cores to each task to create more tasks than 

host cores. We concluded that the interconnect 
portion of the model could cause load imbalance as 
it contained significantly more work than the simple 
core modules. To compensate for this, we changed 
the enqueuing policy from FIFO to LIFO (with and 
without affinity scheduling), hoping that the longest-
running and last-finishing tasks in a given cycle 
would thus become the first task to be executed in 
following cycle, thereby shortening the critical path 
and parallel execution time. The LIFO+Affinity 
curve in Figure 7 shows modest speedup of around 
6X. When compared to thread oversubscription 
(PTHRD in the figure), our LIFO with affinity 
scheduler shows significant improvement in 
speedup, especially for number of tasks ≥ 13. 

C.  SCSI model and scheduling options 
The superlinear speedup on small numbers of host 

cores was encouraging, but we concluded that in 
order to achieve scalable results, we needed to 
improve the parallel decomposition of the model. 
This motivated the SCSI model with a perfectly 
symmetric decomposition with one (or more) 
core/ring slice pair(s) per parallel task. The left-hand 
portion of the graph in Figure 8 (number of tasks ≤ 8 
host cores) shows that with static scheduling on up 
to 8 host cores, scalable superlinear speedup was 
indeed achievable with this model, with a speedup of 
greater than 12X observed on 8 host cores. 
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Figure 6.  CCNI throughput versus parallelism 
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Figure 7.  SCMI model speedup versus parallelism 



 

We also investigated the effects of different 
dynamic scheduling options on this model, by 
assigning fewer and fewer of the 1024 target cores 
to each task to create more tasks than host cores. 
These results are shown on the right-hand side of 
Figure 8 for number of tasks ≥ 9. Unlike with the 
CCNI model, thread oversubscription performed 
much better than FIFO dynamic scheduling, whose 
speedup plummeted to around 2 with greater than 8 
tasks. Oversubscription’s speedup also dropped 
significantly, but still achieved speedups between 6 
and 10 as the number of tasks varied from 9 to 16. 

One possible explanation is that the additional 
overhead of the scheduler significantly adds to the 
execution time of each worker thread, which is more 
noticeable now that the core model is much simpler 
than in CCNI.  However with P=1024 target cores, 
and 16 tasks, there are still 64 target cores per task; 
also it is difficult to imagine that the relatively small 
amount of scheduling code could pose that much 
more overhead compared to the operating system 
code involved in thread scheduling in the 
oversubscription case.  We suspected that something 
more was at work, namely that the FIFO scheduler 
was causing an effectively random assignment of 
tasks to workers (and host cores) thereby destroying 
any cache temporal locality occurring with static 
scheduling. 

To test this hypothesis, we once again changed the 
enqueuing policy from FIFO to LIFO, which would 
at least preserve locality for the last worker arriving 
at the barrier. In addition, we implemented a task 
queue with explicit worker affinity, as described in 
section V, which would attempt to reassign tasks to 
the same worker thread as long as the task queue 
was not empty. Although the simple LIFO policy 
yielded only modest improvements over FIFO, the 

improvement of the LIFO with affinity scheduler 
were dramatic for numbers of tasks that are a 
multiple of eight (16, 24, 32, etc.): in these cases, the 
number of tasks is evenly divisible by the number of 
worker threads which not only provides an even load 
balance of tasks among workers, but as a result may 
also reduce churn in the dynamic assignment of 
tasks to workers. With cache affinity promoted by 
scheduler, the only disadvantage of dynamic 
scheduling is the overhead of the scheduler, which 
does appear to cause a modest decrease in the 
speedup from 12 down to about 10 as the number of 
tasks is increased to 32 (and the number of target 
cores per task is decreased from 128 down to 32 
cores per task). 

D.  The effect of lookahead 
To further improve the performance, we ran 

additional experiments with the SCSI model, 
increasing the amount of lookahead in the scheduler 
to reduce waiting time at the barrier. The results are 
shown in Figure 9, using our LIFO with affinity 
scheduler, and varying the lookahead from zero to 
five target clock cycles.  As expected, increasing the 
lookahead increases the performance by reducing 
waiting time at the barrier.  With a lookahead value 
of 5 cycles, the performance is consistently 
superlinear (greater than the 8 available host cores), 
and almost compensates for the performance drops 
when the number of tasks is not a multiple of 8. In 
addition to reducing barrier wait time, lookahead 
may have a beneficial effect on cache affinity, 
because when a worker thread finds that it does not 
have to wait at the barrier, it also does not need to 
switch tasks, thus preserving the cache locality of 
the current task. 
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Figure 8.  SCSI model speedup 
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Figure 9.  SCSI model performance with lookahead (LA) 
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E.  Job-level versus Multithreading throughput on 
the scalable model 

Finally, to assess the performance of job-level 
parallelism of the SCSI model, we measured the 
throughput achieved by running multiple sequential 
SCSI jobs concurrently on the same multicore host 
machine. As in the CCNI case, the efficiency of the 
host drops as the number of concurrent jobs is 
increased from 1 to 8 jobs, but with the SCSI model, 
the drop in relative throughput appears to be more 
dramatic (Figure 10).  It is not obvious exactly what 
is causing this, but perhaps the operating system’s 
thread scheduler is interfering in some way with the 
cache affinity of jobs, or perhaps the simpler model 
is more sensitive to memory latency because its 
baseline cache hit rate is higher in the single-job 
case and memory contention increases significantly 
as jobs are added. 

Whatever the reason, the marked sub-linear 
throughput increase of job-level parallelism, 
combined with the significantly superlinear speedup 
achievable with multithreading, make multithreading 
yield up to four times the throughput as job-level 
parallelism on the SCSI model. Figure 10 shows the 
relative throughput (efficiency) as the degree of 
multithreading is increased from 1 (i.e. eight 1-
threaded jobs) to 2 (four concurrent 2-threaded jobs) 
to 8 (a single 8-threaded job). The factor of four is a 
combination of a factor of almost 2.5 loss in 

efficiency from job-level parallelism times a factor 
of more than 1.5 increase in efficiency from 
multithreading (i.e. a speedup of almost 14, divided 
by 8 host cores). 

VII.  CONCLUSIONS 
The results presented in this paper demonstrate 

that it is possible for multithreaded simulation to 
deliver scalable performance increases over 
sequential execution, which in turn provides 
significantly higher throughput on large-scale batch 
workloads, if certain conditions are met. This makes 
multithreading a useful tool to improve not only the 
turnaround time of individual simulation jobs, but 
also the turnaround time of large multi-job 
workloads, on highly-utilized multi-server compute 
grids. 

Enabling conditions in the model software include 
a simulation infrastructure  (API, runtime libraries, 
etc.) that easily exposes the module-level parallelism 
inherent in the problem domain; software interfaces 
and coding conventions that promote the 
development of thread-safe code and minimize the 
need for mutual exclusion locks and other explicit 
thread-aware code; the ability of the software 
infrastructure to take advantage of relaxed 
synchronization requirements, e.g. by allowing 
lookahead execution where long communication 
latencies in the model allow it; and the effective 



 

decomposition of the model into sufficiently 
balanced parallel chunks to run on parallel hardware 
without sequential l bottlenecks.  Moreover, we have 
found that application-level scheduling of parallel 
work plays a crucial role in delivering superior 
performance over generic OS-level thread 
schedulers, and that in addition to load balancing, 
must pay attention to cache locality and affinity to 
achieve the best results. 
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