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Abstract—The recent success of graph analytics and machine
learning on challenging problems have provoked both academia
and industry to design efficient specialized hardware. In
this context, many accelerator designs have been proposed.
Instead of designing a specialized hardware, we propose a
general purpose multicore architecture called QUARQ that
provides state-of-the-art performance for graph and neural
network workloads. QUARQ is a tiled multicore architecture
that supports both hardware cache coherence and explicit
messaging capabilities. QUARQ enables scalable computation,
data access, and synchronization. For computation, QUARQ
enables multiple short-SIMD (64-bit) pipelines per tile. Each
short-SIMD can perform four 16-bit precision MAC operations.
QUARQ enables an intelligent coherent cache hierarchy that
exploits data reuse at the private cache levels, and caches
the dataset on-chip in last-level cache, avoiding expensive off-
chip memory accesses. QUARQ also enables an extremely
scalable thread synchronization paradigm that utilizing in-
hardware explicit messaging on top of shared memory. A
moving computation to data model (MC) enables fine-grain
execution of critical code sections at dedicated cores. This
paper evaluates a prototype implementation of the QUARQ
architecture’s MC model on the Tilera TILE-Gx72 multicore
platform, as well as a multicore simulator to evaluate graph
and machine learning workloads at the 1000–cores scale. The
QUARQ architecture is empirically compared against several
competitive single-chip platforms, such as NVidia GPUs and
Intel multicores.

I. INTRODUCTION

The recent success of graph analytics on real world
graphs, and deep neural networks (DNNs) on computer
vision [1] [2] [3] and natural language processing [4] have
attracted the attention of both academia and industry. In
this context, many accelerators are proposed for both high
performance [5] and low energy applications [6] [7] [8].
Specially, GPUs are shown to be effective in processing of
DNNs due to their high floating point operations (FLOP)
rate, memory bandwidth, and large concurrency capabilities.

We have proposed a general-purpose multicore architecture
called QUARQ in [9] and [10]. The overview of a tile of
the system can be seen in Figure 1. The proposed system is
a tiled multicore that combines hardware cache coherence
with in–hardware explicit messaging for low-latency, non-
blocking core–to–core communication. It utilizes the RISCV
ISA with extensions for explicit messaging instructions. We
also extended the core with 4–way short–SIMD execution
unit to increase FLOP rating of the system. In addition,
since it is shown in the literature that 16–bit floating point
is enough for neural networks [11], support for 16–bit
floating point is added to reduce the pressure on caches.
Each SIMD instruction performs up to four 16–bit floating
point operations. To accelerate communication between cores,
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Figure 1: Overview of the QUARQ multicore architecture.

four basic explicit messaging instructions are added to the
ISA and implemented at the hardware level.

1) The send is a non-blocking instruction that requires a
destination address along with the data to be sent from a
sender core to a receiver core. Both destination address and
data are setup in the register file explicitly using load/store
instructions that precede the send instruction. A message is
composed by reading the register file, and inserted into a
send queue for transmission on the on-chip network. 2) Each
send instruction is paired with a blocking receive instruction
(recv) at the receiver core. When a new message is received
at a core, it is buffered in a receive queue until handled via
a receive instruction. A core’s pipeline is stalled if it gets to
a recv instruction but hasn’t received the message yet. The
receive instruction loads the message contents into already
setup registers by the programmer, and an ACK message is
generated and sent back to the original sender core to enforce
flow-control. 3) Blocking send with rendezvous instruction
(sendr) is similar to a send instruction with the exception
that it always blocks the compute pipeline until an explicit
reply is received from the destination thread. 4) Non-blocking
resume rendezvous instruction (resumer) is used to respond
to a sendr instruction from a sender. More details about
the explicit messaging support on top of shared memory
architecture can be found in [9].

The explicit messaging protocol is used to deploy a novel
thread synchronization model that moves compute to data
(MC) to improve performance scalability at 1000–cores scale.
The MC model moves a critical code section to a dedicated
thread called service thread. The shared data to be updated
in the critical code section is pinned to the core executing the
service thread. The worker threads request execution of the
critical code section from the service thread via non-blocking
low–latency messages without any involvement of the cache
coherence protocol. Using a single thread may lead to higher
serialization overhead of critical code section execution,
hence multiple threads are assigned to perform the service



<< Spin Lock Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:

For each neighbor u:
spin_mutex_lock(u);
D[u]++; 
spin_mutex_unlock(u);

<< Atomic Implementation >>
Critical Code Section 
with atomic instruction
fetch_and_add(&D[u],1);

<< MC Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:

For each neighbor u:
coreid = get_service_core(u); 
sendmsg(coreid, u);

Service Thread Job
D array is statically divided 
among service threads 
while !terminate do

u = recvmsg();
D[u]++;

Figure 2: Pseudo code of triangle counting (TC) using Spin, Atomic and MC models.

thread work to alleviate the impact of serialization. Since the
MC model pins shared data to service threads, it eliminates
the cache line ping–pong in traditional thread synchronization
primitives, and enhances the data locality for shared data.
Moreover, the MC model overlaps communication latency
with other stalls and useful works by allowing workers to
send non–blocking critical section requests. Consequently,
it is anticipated to scale to higher core counts as compared
to the traditional spin-locks (Spin), and atomic instructions
(Atomic) based synchronization models.

As representative applications, Single Source Shortest Path
(SSSP) and Triangle Counting (TC) from graph processing do-
main, and a classical DNN AlexNet [3] and SqeueezeNet [12]
are employed to show the performance advantage of the
QUARQ architecture. The MC model is first realized on
the Tilera TILE-Gx72 multicore platform that incorporates
in–hardware explicit messaging on top of hardware cache
coherent shared memory paradigm. Next, an industry-class
multicore simulator is configured to characterize QUARQ at
1000–cores scale. The QUARQ architecture is empirically
compared against competitive single-chip machines, such as
NVidia GPUs and Intel multicores.

II. APPLICATION ILLUSTRATIONS

A. Triangle Counting (TC)
Triangle counting (TC) algorithm is ported from the

CRONO benchmark suite [13]. Figure 2 shows the imple-
mentation of TC using the various synchronization models in
the QUARQ architecture. As seen in the upper left box, the
nodes are divided among threads, and the threads calculate the
triangles in their chunk of the graph. The algorithm performs
critical section for each neighbor, which results in acquiring a
lock multiple times for each node. Therefore, synchronization
on shared data is expected to be high for this algorithm. As
a result, the lock acquisition overhead is elevated due to
retries and cache line ping–pong for both shared data and
the lock variables. Implementing the algorithm using lock–
free data structures by employing the atomic fetch–and–add
(FAA) instruction (lower left box in the figure) removes the
overhead of acquiring locks as the atomic FAA instruction
does not fail. However, the shared data itself still ping-pongs
between cores.

The MC model implementation is presented in the right
side of the figure. The code section that needs atomic

<< SSSP Quarq Implementation >>

Divide nodes among threads
While !done: 

// Traverse the graph
For each node v:

Int min = D[v];
For each neighbor u:

If (min > D[u] + W [v, u])
{ 

min = D[u] + W [v, u]
Flag = True; 

}
D[v] = min;

Barrier;

CheckForDoneSignal(Flag);
Barrier;

Figure 3: Pseudo code of SSSP using Spin, Atomic and MC
models.

updates is migrated to service threads. Only the neighbor
node id is needed for critical section invocation, hence each
worker thread sends one word of data as a message to
the corresponding service thread. Similar to the Atomic
model, the MC model also eliminates locks. In addition, it
also distributes and pins shared data to service threads, and
prevents cache line bouncing between cores. Moreover, by
utilizing non–blocking messaging, it overlaps communication
overheads with other useful work in the worker threads.

B. Single Source Shortest Path (SSSP)
The SSSP benchmark is ported from the Pannotia bench-

mark suite [14]. The algorithm utilizes static node distribution,
similar to TC. As seen in Figure 3, the node distances
are updated without protection of locks. Even though the
threads may end up reading the stale distance values of
the neighboring nodes, the iterative nature of the algorithm
compensates it in the next iterations. The original GPU
implementation utilizes a temporary array to write the new
distance values locally, and push to global array at barrier
synchronization points at the end of each iteration. However,
the temporary array is not needed in a cache coherent
multicore system since the updated distance values are
coherently observed by all threads at the hardware level.
Therefore, the temporary distance array is removed, and
the updates are performed on the global array directly
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using load/store instructions. SSSP requires only barrier
synchronization at the end of each iteration. Hence, the
barriers are implemented using the shared memory spin-
locks, atomic instructions, and the explicit messaging based
MC model.

C. AlexNet and SqueezeNet
Two machine learning workloads are investigated. While

AlexNet is a large network with over 250MB of on-chip
model size, SqueezeNet has a smaller network size of
∼5MB. For both workloads, most of the computation is
in convolutional layers, therefore only parallelization of
the convolutional layers is discussed. Both benchmarks are
realized using the 4-way SIMD with 16-bit floating point
capability per core.

The coarse–grain parallelization strategy is that all neurons
are tiled, and tiles are divided among all available threads.
Each thread performs the computation for the neurons in
its tiles. The tiling is done in a way that the data reuse is
maximized in the private caches. The only synchronization
required is a barrier at the end of each layer. This approach
is implemented using the shared memory spin-locks, atomic
instructions, and the explicit messaging based MC barriers.
Both AlexNet and SqueezeNet are realized using this
approach.

An optimized implementation for AlexNet from [10] makes
use of a fine–grain parallelization strategy. This is achieved
by dispatching multiple threads to work on a single neuron.
The accumulation on a neuron by multiple threads can be
realized utilizing shared memory spin locks. However, it
does not scale as well as the coarse-grain approach due
to additional synchronization overheads. This approach can
also be implemented using an atomic floating point fused-
multiply-and-add instruction. However, this type of operation
is not available as a single atomic instruction in the RISCV
ISA or the Tilera machine used for evaluating the Atomic
model. The MC model is generalizable for any critical code
section implementation, hence it is realized for the fine-grain
synchronization implementation of AlexNet.

III. EVALUATION METHODOLOGY

A. Tilera Machine
TILE-Gx72 multicore platform incorporates hardware-

based core-to-core messaging as an auxiliary capability to
hardware cache coherence and atomic instructions based syn-
chronization. Hence, this platform is deployed for prototyping
the QUARQ architecture. The Tilera platform is a 72 tiles
processor. Each tile contains a VLIW core, 32KB private
level-1 instruction and data caches, and 256KB shared level-
2 cache. It executes at 1 GHz and is equipped with 16 GB of
DDR3 main memory. It runs a linux version that is modified
for Tilera architecture. A modified version of GCC 4.4.7 that
supports Tilera specific features is utilized for the compilation
of the benchmarks.

8 to 64 cores in the system are utilized for performance
evaluation. Completion time is measured by running all the
workloads to completion, and only the parallel region is
measured in each application. Every run is repeated ten
times and the average number is reported to obtain more
accurate benchmarking time.

Architectural Parameter Value
Number of Cores upto 1024 @ 1 GHz
Compute Pipeline per Core In–Order, Single–Issue
Word Size 64 bits
Physical Address Length 48 bits

Memory Subsystem
L1–I Cache per core 8-32 KB, 4–way Assoc., 1 cycle
L1–D Cache per core 8-32 KB, 4–way Assoc., 1 cycle
L2 Inclusive Cache per core 16-256 KB, 8–way Assoc.

2 cycle tag, 4 cycle data
Cache Line Size 64 bytes
Directory Protocol Invalidation–based MESI

ACKwise4
Num. of Memory Controllers 4-16
DRAM Bandwidth/Latency 10 GBps per Controller/ 100ns

Electrical 2–D Mesh with XY Routing
Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits

Explicit Communication
Receive queue per core 2.4 KB

Table I: Architectural parameters for evaluation.

B. QUARQ Simulator
QUARQ architecture is implemented using an in–house

industry–class simulator of a tiled multicore processor. Each
tile implements an in-order RISCV core, and a two–level
private L1, shared L2 cache hierarchy. The cache sizes are
configured for each core count to match the total on-chip
cache capacity of the TILE-Gx72 machine. This is done
to keep the area overhead of the multicore in check as the
number of cores on chip are scaled from 8 to 1024. The
default architectural parameters are shown in Table I.

Performance models of the core, cache hierarchy, coher-
ence protocol, memory system, and on–chip network are
derived from the Graphite multicore simulator [15]. The
performance models are extended to accurately account for
explicit communication instructions, as well as the RISCV
ISA. GCC is used to compile the benchmarks. The compiler
itself does not inherently understands explicit messaging and
SIMD instructions. Instead, it simply wraps the instructions
within assembly blocks, using the GCC extended asm block
syntax to instruct the compiler as to what registers are inputs
or outputs. This allows the compiler to allocate registers
properly and schedule the code.

Both graph benchmarks use the California Road Net-
work [16] as the input graph. Moreover, the machine learning
benchmarks use an image from the ImageNet dataset [17]
for inference. Each benchmark is run to completion, and
the completion time of the parallel region is measured and
broken down into the following categories: Compute Stalls
is the time spent retiring instructions, waiting for functional
unit (ALU, FPU, Multiplier, etc.), and the stall time due
to mis-predicted branch instructions. Memory Stalls is the
stall time due to load/store queue capacity limits, fences,
and waiting for load completion and L1 instruction cache
misses. Communication Stalls is the stall time due to explicit
messaging instructions.
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Figure 4: Average speedup of MC over Spin and Atomic as the
core count increases.

IV. EVALUATION

A. Core Count Scaling of Synchronization Models
Figure 4 shows the average speedup of MC over Spin and

Atomic synchronization models for the TILE-Gx72 machine,
as well as the QUARQ simulator. While the core count is
varied from 8 to 64 in TILE-Gx72, it is ranged from 8 to
1024 in the QUARQ simulator. The overall performance
trends are very similar between the Tilera machine and the
simulator. The relative performance of MC with respect to
Spin and Atomic improves as the core count goes up in both
TILE-Gx72 and in the simulator. However, at core counts
up to 64, the Atomic model outperforms MC by more than
10%. The MC model closes the gap and provides comparable
performance at 64 cores in both TILE-Gx72 and the simulator.
It utilizes the non-blocking aspects of critical code section
requests to overcome the on-chip network latencies at higher
core counts. As the core counts approach 256 and higher,
the MC model handily outperforms the Atomic model. A
detailed analysis of these performance benefits relative to
other competitive machines, such as GPUs and multicores is
discussed next.

B. Machine Learning Benchmarks
Figure 5 shows AlexNet’s completion time breakdowns and

the performance in frames per second (at 1 GHz frequency)
for various core counts. The Spin and Atomic models stop
scaling beyond 256 cores due to expensive barrier overheads
caused by cache line ping–pongs. The MC-coarse version
continues to scale with the explicit messaging based barrier
implementation until 512 cores. On the other hand, the MC-
fine version continues scaling to 1000 cores due to reasons
discussed in [10]. QUARQ achieves 95 frames per second at
256 cores (1 TFLOPs), while machines with similar compute
capabilities achieve lower performance for their open source
AlexNet implementations. For example, NVDIA’s Tegra X1
with 256 CUDA cores [11] gives 67, and Skylake I7 6700K
81 frames per second with Intel proprietary machine learning
libraries. Moreover, as the core count increase, QUARQ
improves performance by 1.75× at 512 cores, and 2.61× at
1024 cores over the 256 cores setup.

Figure 6 illustrates the completion time breakdowns and the
respective frames per second for the SqueezeNet implemen-
tations at various core counts. As mentioned in Section II-C,
SqueezeNet does not have fine–grained parallelization as
opposed to AlexNet. As seen, the version that utilizes the
Spin model does not scale to even 256 cores because
SqueezeNet contains less work between barriers making
them prohibitively expensive. This is improved using the
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Figure 5: Completion time results for Spin, Atomic, MC-coarse
and MC-fine implementations of AlexNet at different core counts.
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Figure 6: Completion time results for Spin, Atomic and MC
implementations of SqueezeNet at different core counts.

Atomic model, which also does not scale beyond 256 cores
due to expensive cache line ping–pongs in the barrier. On
the other hand, the MC model scales up to 512 cores and
performance remains flat as core counts are further increase
to 1024. At 1024 cores, the work between barriers gets
very small compared to the synchronization overhead, hence
performance does not scale. The performance of QUARQ at
256 cores delivers 302 frames per second, which is better
than the performance of NVDIA GTX 750-Ti (239 frames
per second) and Skylake I7 6700K at 4 GHz (285 frames
per second).

C. Graph Benchmarks
Figure 7 shows the completion time results for the Triangle

Counting (TC) benchmark at various core counts. Due to
extra locking overheads, the Spin version does not perform
as good as Atomic and MC even though it scales up to
512 cores. The performance gap also increases as the core
counts increase. Due to expensive cache line ping–pongs, the
Atomic model also starts degrading performance at 512 cores,
and MC provides 1.63× better performance as it pins shared
data to dedicated cores to exploit data locality. Moreover, it
utilizes non–blocking send messages that help worker cores
to hide communication latency with other useful work. As
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Figure 7: Completion time results for Spin, Atomic and MC
implementations of TC at different core counts.
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a result, MC continues to scale to 1024 cores. At 256 and
512 cores, both Atomic and MC models provide less than 5
ms of completion time. This is an order of magnitude better
than NVDIA GTX 750-Ti (122 ms), GTX 970 (67 ms), and
Intel Xeon Phi multicore (133 ms) processors. The GPU and
Xeon Phi utilize state of the art atomic instructions in their
optimized implementations.

Figure 8 shows he completion time results for the SSSP
benchmark at various core counts. All three synchronization
models scale to 256 cores, and Spin starts degrading beyond
that. Similarly, the Atomic model does not scale beyond 512
cores. On the other hand, the MC model shows enhanced
performance up to 1024 cores. SSSP is an iterative algorithm
and each iteration is separated by barrier synchronization.
Hence, as core counts increase, synchronization through
cache coherence becomes expensive and gets dominant in
the completion time. The MC implementation gives 39 ms
at 256 cores, and 25 ms at 512 cores, whereas at similar
scale GPUs, GTX 750-Ti and GTX 970 provide 169 ms
and 47 ms, respectively. As mentioned in Section II-B, the
shared memory implementation does not use the temporary
D-array, which is implemented in the GPU version. Using
temporary array delays observing the updated distances to
the next iteration. This is necessary in GPUs as it does not
have cache coherence. However, in QUARQ, updates on
a global array are efficiently done using hardware cache
coherence. Therefore, making the distance updates on the
global distance array helps threads to see the changes made
by other other threads in the same iteration. This reduces the
iteration count from 48 to 28 iterations, and helps QUARQ
achieve better performance than the GPU implementations.

V. CONCLUSION

This paper presents performance analysis for deep neural
network and graph processing applications on the QUARQ
multicore architecture. QUARQ features short–SIMD and
16–bit floating point support per core, and accelerates thread
synchronization using a novel moving compute to data
model that ships critical code sections to dedicated cores
using auxiliary low-latency, non–blocking explicit messaging
instructions. A real TILE-Gx72 machine is prototyped to
demonstrate the practicality and applicability of the proposed
synchronization models. QUARQ scales to 1024 cores,
and offers best performance of 248 frames per second for
AlexNet, 401 frames per second for SqueezeNet, and 5ms for
single source shortest path and 30ms for triangle counting
benchmarks executing on the California Road Network graph.
These performance results are shown to be competitive with

various state-of-the-art NVidia GPUs and Intel multicores
executing optimized implementations of these benchmarks.
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