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Abstract—The rapid growth in the size of Graph Convolutional
Neural Networks (GCNs) encounters both computational- and
memory-wall on classical computing platforms (e.g., CPU, GPU,
FPGA, etc.). Quantum computing, on the other hand, provides
extremely high parallelism for computation. Although quantum
neural networks have been recently studied, the research on
quantum graph neural networks is still in its infancy. The key
challenge here is how to integrate both the graph topology
information and the learning ability of GCNs into quantum
circuits. In this work, we leverage the Givens rotations and
its quantum implementation to encode graph information; in
addition, we employ the widely used variational quantum cir-
cuit to bring the learnable parameters. On top of these, we
present a full-quantum design of Graph Convolutional Neural
Networks, namely “QuGCN”, for semi-supervised learning on
graph-structured data. Experiment results show our design is
competitive with classical GCNs in terms of node classification
accuracy on Cora sub-dataset. More importantly, we show the
potential advantages that can be achieved by the proposed
quantum GCN design when the number of features grows.

Index Terms—Graph Convolutional Neural Network, Quan-
tum circuit design, Givens rotation, NISQ.

I. INTRODUCTION

Due to the consistently growing size of machine learning

models and the high parallelism of the quantum computing

paradigm, Quantum Machine Learning (QML) has become

one of the most active emerging topics. The basic concept

of QML is to perform machine learning tasks on quantum

devices, such as quantum feedforward neural network [1]–

[3], quantum convolutional neural network [4], and quantum

recurrent neural network [5]. Recently, Graph Convolutional

Neural Networks (GCN), a deep learning method designed

to process graph-structured data, raise much attention. GCN

can handle the Non-Euclidean datasets that are not suitable

for traditional neural networks. Given the graph structure and

nodes’ information as input, GCNs can work on graph tasks

such as node/graph classification and edge prediction [6], e.g.,
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Semi-Supervised Classification with Graph Convolutional Net-

works [7], [8]. Due to the high complexity of graphs, classical

computing platforms (e.g., CPUs, GPUs, and FPGAs) met

bottlenecks in both storage and computation. With the ability

to represent 2N features on N qubits, quantum computing

has great potential for GCN applications. However, there are

limited research efforts on quantum GCNs; in particular, it

lacks a design of quantum-version GCN to leverage the power

of quantum computing in the near-term Noisy Intermediate-

Scale Quantum (NISQ) era.

Although the quantum computing platform has demon-

strated its ability to accelerate standard neural networks, (e.g.,

feedforward neural network, FFNN), when quantum comput-

ing meets GCNs, new challenges arise. In the conventional

FFNN, it only contains a parameterized classifier (or called

weight matrix), which can be easily realized by a Variational

Quantum Circuit (VQC); on the other hand, instead of a weight

matrix, GCN further has an adjacency matrix to represent

the topology of a given graph. Existing quantum GCN works

either only implement the weight matrix [9] or use classical

computing for the adjacency matrix [10]. The former approach

cannot extract the features from the graph structure, while the

classical computation in the latter approach can easily become

the performance bottleneck. The key challenge here is how

to implement the adjacency matrix on the quantum circuit.

Second, the design should be scalable, targeting the near-

term quantum devices; in particular, the quantum GCN should

be accommodated to the limited number of qubits. Existing

designs apply O(N) or even more qubits to represent N nodes

in GCN, which is obviously not scalable. To overcome the

above challenges, innovations are needed in the design of

quantum circuits for both adjacency matrix and weight matrix

with a limited number of qubits.

In this paper, we propose a brand new design to implement

the quantum circuit for GCN, namely quantum graph con-

volutional neural network (QuGCN). In QuGCN, we apply

Givens rotation to realize the message passing with neighbor

nodes, which has the same function as the adjacency matrix.

Second, we employ amplitude encoding to represent the node

features in the quantum circuit, as such, N node features can

be encoded to logN qubits. Last, we seamlessly attach the

VQC to the quantum circuit with the graph information; i.e.,
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the circuit implemented by Givens rotation for the adjacency

matrix. As such, the proposed design can present the structure

feature of a given GNN using a small number of qubits, and

perform GCN tasks, such as node or graph classification.

The main contributions of this paper are as follows.

• We propose an end-to-end design, namely QuGCN, to

implement graph convolutional neural networks to quan-

tum circuits to process graph-structured data.

• We bring the Givens rotation and variational quantum

circuit into the QuGCN design so that the adjacency

matrix and weight matrix in the graph neural network

can be successfully encoded to the quantum circuits.

• Experiments are conducted on a commonly used dataset

to evaluate the effectiveness of QuGCN, on top of which,

we provide the insights the design of quantum GCN and

point out the future directions on QGCN.

QuGCN is evaluated on the commonly used dataset, Cora.

With the comparison of multiple baselines, the proposed

QuGCN can outperform the existing quantum GNN without

integrating the graph’s topology information, in terms of

accuracy. The node classification accuracy is similar to the

GCN in classical computing. What’s more, we analyze the

design cost complexity of QuGCN and the classical GNN

model. With the increase of input features, the total cost of

QuGCN can be exponentially reduced from a classical GCN.

In the meanwhile, we also show that for the nodes with 256

features, QuGCN can outperform classical GCN when the

number of nodes in the graph is less than 128.

The remainder of the paper is organized as follows. Section

II provides the preliminaries and reviews the related work;

Section III presents the proposed QuGCN design. The detailed

quantum circuit design based on Givens rotation is presented

in Section IV. Experimental results are reported in Section V.

Section VI discusses the insights of QuGCN and concluding

remarks are given in Section VII.

II. PRELIMINARIES AND RELATED WORK

A. Quantum Basics

The basic unit in the quantum computing is the quantum

bit, called qubit. It is a linear combination of two basis states:

|φ〉 = a|0〉 + b|1〉, where |0〉 and |1〉 are the basis states.

Coefficients a and b are known as amplitudes, which are

complex numbers and satisfy a2 + b2 = 1. For a n-qubit

system, a vector, x with 2n complex elements, is used to

represent the amplitudes of 2n basis quantum states. All the

elements in x satisfy
∑2n

i=0 |xi|2 = 1.

A set of qubits is composed of a quantum circuit, and

the computation is to transit the qubits from one state to

another. Here, the basic computation unit is the quantum gate.

A quantum gate can be represented by a unitary matrix, U(θ),
where θ is a trainable parameter. The quantum computation is

the transition of qubits’ state, e.g., |φ〉 = · · ·U(θ)|φ0〉, where

φ0 is the initial state and |φ〉 is the output state. In a quantum

circuit, a set of quantum gates are performed sequentially to

realize a function.

U(x) W(θ) M

0

(a) A General Design of VQC (b) A Typical Design of VQC
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Fig. 1. Background of VQC: (a) A general design of VQC. (b) A typical
design of VQC without encoding. The purple block is repeated for certern
times. (c) Three commonly-used VQC design with trainable parameters and
strong entanglement.

...

Hidden Layer

Fig. 2. Background of Graph Convolutional Network (GCN): The high-level
depiction of multi-layer GCN for semi-supervised learning

At the end of the quantum circuit, a readout subcircuit is

applied to extract the computation results, which measures the

probability of a qubit state, say state |0〉 for Z-measurement.

Variational Quantum Circuit (VQC) [11] is commonly used

to perform learning tasks in quantum computing [12]. Fig-

ure 1(a) shows the general design of VQC, including encoding

unit U(x), computation unit W (θ), and measurement sub-

circuit M . For data encoding U(x), there are different ways to

convert classical data to quantum data, such as amplitude en-

coding , angle encoding [13], etc. In computation unit W , the

qubits are entangled to represent one function, which include

a set of trainable parameters θ = [θ1, θ2, . . . θn]. After the

measurement sub-circuit M , the results are usually connected

with an activation function, which is similar to classical neural

networks to perform further tasks (e.g., classification). With

these components, Figures 1(b)(c) give the commonly-used

VQC designs.

B. Graph Convolutional Neural Networks

Graph Convolutional Neural Network (GCN) [7] shows

its potential to process graph tasks (e.g., graph classification

and semi-supervised node classification), where the data have

graph structures opposite to the data with regular structure,

like images. The key idea of GCN is to use edge structure to

aggregate node information and generate new node represen-

tations with regular structure. As such, the newly generated

node representations can be processed using the conventional

deep neural networks, such as Multi-Layer Perceptron (MLP).

Existing GCN works [7] have shown the remarkable ability

of GCN to accomplish fast and scalable semi-supervised

classification of nodes for given graphs.
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Figure 2 illustrates an example of a multi-layer GCN for

semi-supervised learning. The hidden layers include two parts,

feature extraction and edge representation, sharing the same

graph structure (i.e., edges shown as black lines) for each layer

and aggregate node information through the spatial neighbor-

hood. At the end of the last layer, we obtain a set of nodes

having the label Yi, and we will need to predict the labels

of the rest nodes in semi-classification tasks. In the above

process, one key component is the layer-wise propagation, in

the following equation, we give a commonly used rule for

such propagation,

H(l+1) =
(
H(l), A

)
= σ

(
AH(l)W (l)

)
(1)

where A represents the adjacency matrix, W represents the

weight matrix, H l ∈ RN×D is the matrix of features in

the lth layer; AH(l)W (l) selects the first-order neighbor

nodes to realize the information transmission. Equation 1 can

successfully complete the information transmission; however,

it makes the values of nodes with more neighbors become

an infinite number during iterations. This problem can be

addressed by normalizing the adjacency matrix as follows,

H(l+1) = f
(
H l, A

)
= σ

(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(2)

C. Givens Rotation

Givens rotation is originally from the numerical linear

algebra, which is a rotation in the plane spanned by two

coordinates axes [14]. The fundamental representation of a

Givens rotation is as follows:

GN (i, j, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . c . . . s . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . −s . . . c . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where c = cos θ and s = sin θ appear at the i-th and j-th rows

and columns. More detailly, given i, j, where i >j, the non-

zero elements in the matrix of Givens roation are as follows:
gkk = c for k = i, j

gji = −gij = −s
Givens rotation can be employed for computing the QR

decomposition of a matrix. One advantage over QR decom-

position using Givens rotations is that they can easily be

parallelized, and another is that they have a lower operation

count for very sparse matrices.

D. Related Work

G Verdon et al. [15] conducted one of the first quantum

graph neural network studies. They introduced a general Quan-

tum Graph Neural Network ansatz, a parameterized quantum

circuit representing quantum processes with graph structure.

To be more specific, they applied the concept of Hamiltonian

evolutions to simulate the graph structure. Graphs can natu-

rally describe it if we consider two connected nodes as two

qubits with interaction. Based on this proposed ansatz, they

gave different specialized architectures.

J Zheng et al. [10] later proposed a quantum Graph Con-

volutional Neural Networks model aiming to demonstrate

the graph’s topology in a quantum architecture similar to

traditional graph convolutional neural networks. The main task

of the paper was to design a quantum circuit that can solve

graph-level problems(i.e., graph classification). With the test

on the dataset, they could distinguish the input image into two

categories.

Limited by the number of usable qubits in the quantum

circuit, the previous methods can only handle small graphs.

X Ai et al. [16] gave a more comprehensive model to not

only achieve the goal of simulating Graph Neural Networks to

classify graphs but also propose a strategy to solve the lack of

available qubits. The key in their method was to use Subgraph

decomposition and CNOT gates to handle the topology of a

given graph. For a given graph with n nodes, they split the

whole graph into n subgraphs. Thus, each subgraph consisted

of a node with its neighbors, represented by qubits equal to

the number of subgraph’s nodes and followed by a series of

trainable parameterized gates. Then, they could entangle their

information by applying CNOT gates to each pair of nodes in

a subgraph. Finally, they combined all subgraphs and got the

graph representation for classification.

Besides the pure quantum circuits, some hybrid methods

adopt quantum layers and classical layers to solve machine

learning problems. C Tüysüz et al. [9] proposed a Hybrid

quantum-classical graph neural network to reconstruct the

track of particles(i.e., edge prediction). Their model had three

components, the Input network(classical neural network) used

to increase the dimension of node features, and the Edge

network and the Node network used to update the graph’s

features. In their design of the Edge network and Node

network, they applied trainable classical layers before and after

one quantum neural network. The model could predict the

connection between two nodes with the extracted edge features

in the last Edge network.

The above methods attempt to use the quantum circuits

to simulate the graph structure and do neural network tasks.

They do not integrate the graph neural networks with quan-

tum machine learning, i.e., encoding the adjacency matrix

(representation of a graph) into quantum. Thus, they do not

consider the graph’s topology in the circuit design. Here,

we develop a novel quantum machine learning algorithm for

graph-structured data called Quantum Graph Convolutional

Neural Network (QuGCN), which implements the quantum

circuit design of GCN.

III. QUANTUM GRAPH CONVOLUTIONAL NEURAL

NETWORKS (QUGCN)

A. Design Principles

Before introducing the details of the QuGCN design, we

will first present our design philosophy.

Principle 1: The quantum version GCN should include
all operations in a classical GCN, as shown in Formula 2.
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Fig. 3. An overview of Quantum Graph Convolutional Neural Networks (QuGCN)

In our design, QuGCN will perform three operations on a

quantum circuit to process the given graph for a learning

task: (1) Represent node features in the quantum circuit. (2)

Embed graph structure using the quantum operations, called

“Graph Structure Embedding”. (3) A quantum neural network

model to perform learning tasks (e.g., the semi-supervised

classification of nodes in a graph), called “Feature Extraction”

in this paper.

Principle 2: Design cost can be optimized by leveraging
the property that operations (2) and (3) can be swapped.
As shown in Formula 2, the order of multiplication between

D̃−
1
2 ÃD̃−

1
2 × H(l) and H(l) × W (l) will not affect the

function. However, if the number of features is decreasing

along layers, we can reduce the quantum circuit complexity

by firstly executing H(l) ×W (l).

With the assumption that the number of features is decreas-

ing along layers, the proposed QuGCN design is illustrated

in Figure 3. It contains two sequential steps, each of which

will have a block to encode node features into the quantum

circuit, denoted as “Node Representation” in the figure. The

first step takes the given graph-structure data as input, and

propagates a trained VQC to obtain the intermediate graph-

structure data. Then, the second step will process the obtained

data according to the graph structure. Finally, the output of the

second step will pass an activation function to perform the ML

task (e.g., node classification in this figure). In the following

of this section, we will introduce these steps in detail.

B. Node and Feature Representation

In this work, we apply amplitude encoding to do the

quantum state preparation for both node and feature. For the

node representation, our purpose is to map feature vectors

X ∈ R
N×d to the amplitudes of quantum states, where N is

the number of nodes (i.e., vector) and d is the dimensions of a

vector (i.e., the number of features in each node). In dimension

j, there are N features corresponding to N nodes, denoted

as X:j , which will be encoded in the jth quantum circuit.

To correctly encode N classical features to the quantum

circuit, we will firstly normalize X:j by L2-norm to satisfy∑N
i=0 |xij |2 = 1. If N < 2n, where n is the number of

qubits, we fill the empty positions with zero. In all, there

are d quantum circuits in total. Similarly, for the feature

representation, we will encode d features of the ith node in

one quantum circuit, and there will be N quantum circuit in

total.

C. Feature Extraction Based on VQC

In classical GCN (Equation 2), W is a layer-specific, node-

shared, and trainable weight matrix. The shape of the weight

matrix will depend on the dimensions of input features and

output features in each layer. A simple fully connected (FC)

layer is usually used as the trainable weight matrix. To

mimic the FC function in GCN, in QuGCN, we employ the

variational quantum circuit (VQC) to extract features. With the

feature representation introduced in Sec. III-B, we will have

N quantum circuits, each of which has the encoded features

corresponding to a node. Similar to weight matrix W , all

these circuits will propagate the layer-specific and node-shared

VQCs.

D. Graph Structure Embedding Based on Givens Rotation

In Equation 2, D̃−
1
2 ÃD̃−

1
2 represents the graph structure,

which realizes the information communication with the first-

order neighbor nodes. Similarly, we need to achieve the infor-

mation transmission with neighbor nodes on quantum circuits.

Based on the node representation in Sec. III-B, we will have d
quantum circuits with the encoded N features. Since each node

corresponds to a quantum state, the communication between

nodes in the graph is now equivalent to the information

communication between quantum states. That is, we need

a quantum gate/circuit to operate on two quantum states at

one time and it will not affect other states. Kindly note that

since such an operation is performed by the quantum gates,

indicating that the operation should be a unitary matrix. To

satisfy the above needs, Givens rotation (see Sec II.C) can be

used for graph structure embedding.

Givens rotation can intuitively pass the amplitude of the

p state to the q state. For a Givens rotation GN (p, q, θ) ∈
RN×N , only the elements of rows p, q and columns p, q are

different from the identity matrix IN ∈ RN×N . Let θ = θ
2 ,

the elements of row p, q and column p, q are selected as the

submatrices:

G2 =

[
cos

(
θ
2

)
sin

(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)] (4)

The state transmission process is as Si+1 = GN (p, q, θ)×Si,

where the state vector Si ∈ R
N×1. The other elements can
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Fig. 4. The quantum implementation of 4-node edge mapping

remain unchanged except for the positions of p and q in the

state vector.

Example 1: N = 2, p = 0, q = 1, s0 = [a, b]
T

S1 = G2 (0, 1, θ)S0 =

[
a× cos

(
θ
2

)
+ b× sin

(
θ
2

)
a× sin

(
θ
2

)
+ b× cos

(
θ
2

)] (5)

From Equation 5, it is clear that the involved states corre-

spond to two neighbor nodes. To enable such operation in a N
qubits system, the communication between a pair of arbitrary

nodes can be formulated as follows,

GN |p〉 = GN (p, p, θ)|p〉+GN (p, q, θ)|q〉
GN |q〉 = GN (q, p, θ)|p〉+GN (q, q, θ)|q〉 (6)

where p, q is the index of matrix GN . Except |p〉 and |q〉, other

basis states are left unchanged. In this way, we will generate

N Givens rotation to represent the graph structure for an N-

nodes graph. Note that θ is a hyperparameter, which is the

same in all implemented Givens rotations in QuGCN.

Givens rotations can represent directed graphs. For an

undirected graph, we only consider the givens(p, q, θ) where

p
≤ q.

IV. CIRCUIT IMPLEMENTATION OF GIVENS ROTATION

As discussed above, any two quantum states can be commu-

nicated by a Givens rotation. For an example of two states, the

matrix to represent Givens rotation is Equation 4. In quantum

computation, the matrix representation of Ry quantum gate is

exactly the same as the matrix of Givens rotation. Therefore,

the communication of edge 〈0, 1〉 in Example 1 can be

implemented by a Ry gate in a quantum circuit. To extend

the implementations of quantum circuit for the arbitrary scale

of Givens rotation, there are two steps: First, we need a design

of 2-qubit quantum circuit for a Givens rotation with the

dimension of 4×4. Then, for a quantum system with n qubits,

we need to apply the designed 2-qubit quantum circuit for

arbitrary 2 states.

A. Two-qubit Quantum Circuit for Givens Rotation

To design the quantum circuit for Givens rotation, we will

need to involve the following sets of quantum gates. First, the

0 1

23

q�

q� X X

Ry(θ) X

Ry(θ)

X Ry(θ)

(a) (b)

Fig. 5. An example of generating a circuit from a graph.

not gate, X . The matrix representation is as follows:

X =

[
0 1
1 0

]
(7)

Second, the control-not gate, CX . Its matrix representation is

as follows:

CX =

⎡
⎢⎢⎣
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

⎤
⎥⎥⎦ (8)

Lastly, we will invovle the control-Ry gate, whose matrix

representation is as follows.

CRY =

⎡
⎢⎢⎣
1 0
0 1

0 0
0 0

0 0
0 0

cos
(
θ
2

)
sin

(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)
⎤
⎥⎥⎦ (9)

By combining several CX , X , and CRY gates, we can

obtain all the 2-qubits implementations for 4-nodes edge rep-

resentation. We summarize these implementations in Figure 4.

With the design of edge representation for any pair of nodes,

we can construct the node representations in a given graph.

Figure 5 shows an example of constructing the quantum circuit

for a graph.

B. Givens Rotation in a Multi-qubit quantum circuit

Now, we will introduce how to leverage the above 2-qubit

circuit design to perform the communication between two

states in a N-qubit circuit. Specifically, 2-qubit implementation

G2 (p, q, θ) can be extended to multi-qubit GN (p, q) by a

multi-control unitary Gate. In the following, we will use an

example to show the communication between nodes p = 13
and q = 18 in a 5-qubit circuit. The method can be further

extended to the quantum circuit with more qubits.
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Fig. 6. (a) The implementation of C0100G2(p, q, θ) (b) The implementation
of C10F 2(p, q)C10 (c) The implementation of G5 (13, 18)

TABLE I
COMPLEXITY ANALYSIS. L IS NUMBER OF LAYERS, N IS NUMBER OF

NODES, D IS NUMBER OF FEATURES AND E IS NUMBER OF EDGES.

GCN QuGCN

HW O(LND2) O(LNlog2(D))

AH O(L(E +N)D) O(Llog22(N)ED)

AHW O(LND2 + LED) O(LNlog2(D) + Llog22(N)ED)

Example 2: the implementation of G5 (13, 18) can be

completed in 3 stages:

In the first stage, we will get a binary number of p and q

to represent the node. For example, p = 13: 01101, q = 18:

10010.

Next, in the second stage, we will generate the transmission

steps from left to right. Our target is to transmit the amplitude

value from the p − th state to the q − th state. In one step,

only 2 bits of binary p can be changed by G2 (p, q, θ), and

other bits need to remain unchanged. We repeat the two-qubit

transmission from left to right by adding 1 to the index i. In

order to minimize the steps, if the i-th bit in the binary of p and

the binary of q are the same, we could skip the i-th step. For

example, we generate the steps for G5 (13, 18) as follows.

Step i=1: 01101 ->10101; Step i=2 (skip): 10101->10011;

Step i=3: 10101->10011; Step i=4: 10011 ->10010.

At last, we need to generate the multi-control unitary gates

for each step. Multi-controls U-gates with states can achieve

only the qubits with U-gates are processed while other qubits

remain unchanged, noting CstateUCstate. (Figure 6(a)(b) are

examples of CstateUCstate. The last step is with Givens rota-

tions, noting Gn (p, q), while all pre-steps are with flip gates,

noting Fn (p, q). Givens rotations are used to do information

transmission between 2 states, which is not for arbitrary states.

Therefore, we need flip gates to exchange the amplitude

between different states. CX gate is an example of flip gate,

the matrix representation of which is Equation 8. In a Givens

rotation circuit, Fn (p, q) should be added symmetrically to

prevent changing the other states. The circuit is shown in

Figure 6(c).

C. Complexity Analysis

We divide the GCN or QuGCN model into two parts to

analyze the complexity. The two parts are graph structure

embedding (noted as AH) and feature extraction(noted as

HW ). For simplicity, we assume the number of features is

fixed for all layers. At the same time, we dismiss the sparsity

of the feature matrix but only focus on the sparsity of the

adjacency matrix.

For classical GCN, we do HW first and then do AH . We

consider both H and W as dense matrices, so the complexity

of HW is summed up to O(LND2) for L layers. We consider

normalized adjacency matrix D̃−
1
2 ÃD̃−

1
2 as a sparse matrix,

so the operation number of AH is L||A||0F , where ||A||0 is

the number of non-zero elements in the normalized adjacency

matrix. Considering that normalization will not change the

sparsity pattern of the adjacency matrix thoroughly except for

diagonal elements, the operation number of ||A||0 is 2E +N
and the complexity of AH is O(L(E +N)D).

For quantum GCN, the execution order of HW and AH is

the same as QuGCN. In this paper, we consider the number of

basic gates ’U,CU,X,CX,CCX,P ’ as the operation number

of quantum circuits, where Cn is multi-control gate. For

commonly-used VQC design, the operation number is rn,

where r is a constant value and n is the number of qubits.

So the complexity of HW is O(LNlog2(D)). For Givens

rotations, the complexity of n-control U-gate CstateUCstate is

O(n) and it should be repeated O(n) times according to step

3, so the complexity of Gn(p, q) or Fn(p, q) is O(n2) and the

complexity of A×H is O(LNlog2(D) + Llog22(N)ED).
We summarize the complexity of GCN and QuGCN in

Table I. We can clearly learn from the last row that QuGCN

can achieve exponential speedup on F but lose the advantage

because of the superfluous O(log22(N)).

V. EXPERIMENTS

A. Experiment Setups

Datasets We follow the experiment in [7] to evaluate

QuGCN on semi-supervised classification tasks in citation

networks, Cora. We randomly generate different sub-datasets

of Cora with different sizes (ranged from 128 to 1024) to do

a binary classification task. Label rate denotes the number of

labeled nodes used for training divided by the total number of

nodes in each dataset. We do not use the validation set labels

for training.

QuGCN models We apply the amplitude encoding pre-

sented in [13]. In detail, we convert the input values to the

amplitudes by L2-normalization. For the weight matrix, we

repeat the main part in VQC 7 times. The classification results

are obtained based on the measurement results. We divide

the outputs into two groups and sum them up in each group

to generate the output values. Finally, we adopt Softmax as

the activation function for classification. The QuGCN model

is implemented using Qiskit APIs and Torch-Quantum [17],

which can be executed on the IBM Qiskit Aer simulator

Competitors We compare QuGCN with the existing works

on the same dataset. Our design QuGCN consists of Givens

rotations and variational quantum circuits. To verify the effec-

tiveness, the baselines are (1) Classical GCN [7]: normalized

adjacency matrix and a fully connected linear layer. (2) Hy-

brid QGNN [9]: classical normalized adjacency matrix and

variational quantum circuits (3) QNN [11]: only variational

quantum circuits.
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Fig. 7. Comparison between classical GCN and QuGCN on the number of operations: (a-d) with the fixed number of features, operations grows along with
the number of nodes; (e-h) with the fixed number of nodes, operations grows along with the number of features.
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Fig. 8. Comparison of accuracy between QuGCN and other baselines

B. Design Cost and Accuracy Comparison

Figure 7 shows the increase of operations affected by the

number of nodes and features, which verify the conclusion of

complexity. In section 4, we have analyzed the complexity

of GCN and QuGCN, showing that QuGCN can achieve

exponential speedup on F but lose the advantage because of

the superfluous O(log22(N)). In the experiments, we calculated

the operation number on the subset of Cora. When the number

of nodes is a relatively small fixed number and the number

of features dominates complexity, GCN grows faster than

QuGCN. In contrast, when the number of nodes dominates

complexity, QuGCN grows faster than GCN. We have to admit

that the current implementation of Givens rotations in this

paper is not a good design.

Figure 8 reports the accuracy of our proposed model

QuGCN and the other four baselines. We learn that the

accuracy of QuGCN is higher than QNN on datasets of

different sizes. From this result, we can verify that Givens

rotations could embed the graph structure to quantum circuits

and achieve information transmission between neighbor nodes,

which makes the accuracy better in semi-supervised classifi-

cation tasks. Comparing Hybrid QGNN with classical GCN,

the accuracy of the classical GCN layer is usually higher than

that of Hybrid QGNN. This is mainly because the number of

trainable parameters in VQC is limited due to barren plateaus

in quantum neural network training landscapes. Besides, our

proposed model can beat the hybrid method in some situations,

which shows the effectiveness of Givens rotations to replace

the adjacency matrix.

(d) N = 32

(b) N = 64

(e) N = 64

(c) N=128

(f) N=128

(a) N = 32

Fig. 9. Visualization of adjacency matrix with heatmap: (a-c) classical GCN
32 to 128 nodes; (d-f) QuGCN with corresponding number of nodes.

C. Visualization

Figure 9 shows the heatmap of the normalized adjacency

matrix (the first row) and the product of Givens rotations

(the second row). We found that they have similar patterns.

First, the diagonal element from top-left to bottom-right is

1. Second, the position of outstanding points is the same in

the corresponding two graphs. We also observe differences in

these results. The values of outstanding points on both sides

of the diagonal are different in the Givens rotation product

but are the same in the normalized adjacency matrix. This is

mainly because all of the non-zero elements in the classical

normalized adjacent matrix are over zero but the non-zero

elements in Givens rotations are skew-symmetric (AT = −A,

A is called skew-symmetric).

From the similar patterns, we can conclude that a product of

Givens rotations can take the place of a normalized adjacency

matrix to transmit information between nodes.

VI. DISCUSSION AND INSIGHTS

A. Potential Speedup against Classical GCN

Noticing that the implementation in this paper is rela-

tively easy to understand even though it has not been the

most effective yet. Since the hyperparameter in each Givens

rotation is the same, we can merge the Givens rotations

groups in a specific pattern by multiplication. For example,
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Fig. 10. The heatmap of qubits for growing size of features and nodes

G2(0, 1)×G2(2, 3) can be implemented by only one RY gate,

which makes quantum operations achieve advantages.

Besides, classical GCN is a kind of batch operation, which is

suitable for parallel computing. Considering the parallelism of

quantum computing, there is enormous potential for QuGCN.

In our future work, we will explore the speedup to show

the great potential of quantum implementation of GCN.

B. Scalability on Large-scale Graph

We know that there are currently no stable quantum comput-

ers with large-scale qubits; our design shows the scalability on

large-scale graphs even in today’s small-scale NISQ quantum

computers. Figure 10 reports the required number of qubits to

implement a QuGCN model with a certain number of nodes

and features. As the supplied number of qubits increases, we

can map exponential-increase information to quantum qubits.

C. Sparsity of Features and QNN Compression

It should be noticed that the feature vectors of Cora are

also sparse. If we consider feature sparsity into computation,

the complexity of HW in Equation 2 is O(LN ||W ||0), where

||W ||0 is the number of non-zero elements in weight matrix.

O(LN ||W ||0) is much better than O(LND2).

In the meanwhile, feature sparsity can also makes quan-

tum circuit faster. For sparse feature, large-size VQC is not

necessary. Existing works [18], [19] show the effectiveness of

quantum neural network compression.

VII. CONCLUSION

In this work, we make the very first design to map the

graph convolutional neural networks (GCNs) to the quantum

circuit, including the implementation of the weight matrix

by the variational quantum circuit and the adjacency matrix.

In this way, both graph information and learnable parame-

ters are integrated into the quantum circuit. Experiments are

conducted on the subset of the widely used Cora dataset.

Results show that the proposed QuGCN design can achieve

competitive accuracy with classical GCN. In addition, QuGCN

significantly outperforms the existing quantum implementation

without integrating the graph topology information. Last, we

provide insights on the design to show the potential advantage

of quantum computing for GCNs.
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