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Abstract—Graph Neural Networks (GCNs) have attracted wide
attention and are applied to the real world. However, due to the
ever-growing graph data with significant irregularities, off-chip
communication with poor data locality has become the major
bottleneck hurdling the development of GCNs. Fortunately,
recent works demonstrate Resistive Random Access Memory
(ReRAM) has the potential to perform inherently parallel in-
situ computation of Matrix-Vector Multiplication (MVM) in
the analog regime fundamentally breaking the communication
bottleneck.

Inspired by this observation, we propose a novel ReRAM-
based GCN acceleration co-design (i.e. algorithm-hardware)
framework, CoDG-ReRAM, that can deliver real-time GCN
inference with high accuracy. On the algorithm side, we propose
a novel model optimization pipeline that simultaneously and
efficiently sparsifies and regularizes both graph and parameter
matrices in GCNs and creates ReRAM-friendly models. On the
hardware side, we take advantage of the software optimization
results to provide a more systematic mapping scheme and in-
crease computation efficiency to have an energy-efficient ReRAM-
based GCN acceleration with low latency. Experimental results
show that the proposed work improves performance and energy
efficiency by 4× and 5.1 × respectively over SOTA ReRAM-based
accelerators of GCNs with a negligible accuracy loss.

Index Terms—Graph Neural Network, Processing In Memory,
Computer Architecture, Resistive Random Access Memory

I. INTRODUCTION

Due to the high accuracy and excellent information acqui-

sition capability, GCN has become an extremely vital and

fundamental method in graph applications including recom-

mendation systems, power grids, and biomedical research

[54]. Different from the traditional Deep Neural Networks

(DNNs) whose data have to be structured, GCNs directly

work with non-Euclidean data, which drastically extends their

applications. However, due to the ever-growing graphic data

size and its irregularity, data communication has been the key

bottleneck [1], [32], hurdling the development of GCNs and

seriously restricting their industrial boarding.

As a rising and rapidly developing technology, ReRAM de-

vices are considered to be a promising approach to perform the

* Equal contribution

inherent parallel in-situ MVM in the analog regime with O(1)

complexity [33], [37], [41], [48], which can greatly reduce

the data movement and save computation resources. Thanks

to those distinctive properties, researchers have enforced DNN

accelerators on ReRAM devices [30], [33], [47], [48], which

present excellent performance including low energy consump-

tion and low inference latency. Although there exist several

high-performance accelerators [16], [18], [44], [46] and even

ReRAM-based solutions to accelerate GCNs [22], few of them

leverage the potentials of algorithm-hardware co-design of

ReRAM-based mixed-signal accelerators for GCNs.

In this paper, we propose a novel ReRAM-based GCN

acceleration co-design framework to fundamentally eliminate

the communication bottleneck in GCN computation while

maintaining extraordinary accuracy. Figure 1 illustrates the

overview of our co-design framework. There are two essential

efforts that contribute to this work to achieve superior perfor-

mance: software algorithm and hardware design. In the algo-

rithm part, we propose and enforce three optimizations: a novel

semi-structural graph topology optimization, column balanced

block-wise weight pruning, and ReRAM-customized weight

quantization. Starting with graph topology optimization, to

reduce the irregularity and enhance the structural sparsity

of the graphs, we reconstruct the whole graph via subgraph

classification and group partitioning. Besides, to maintain high

accuracy, we also detect and prune edges that make nega-

tive contributions to classification. Then, to reduce redundant

computation, we apply ADMM-based column balanced block-

wise weight pruning [31], which can ensure that the weight

matrices share a similar pruning pattern with the optimized

graph and furthermore make the entire model more hardware-

friendly. Finally, to better deploy GCNs on ReRAM, we apply

ADMM-based weight quantization [52] to reduce the precision

of weight matrices from single/double precision floating point

to 2/4/8 bits while maintaining high accuracy. On the hardware

level, we propose an efficient ReRAM-based accelerator that

utilizes the optimizations from the algorithm side to more sys-

tematically map the weight and feature matrices into crossbars.

our contributions are summarized as follows:
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Fig. 1. Overview of the proposed CoDG-ReRAM codesign framework for GNN acceleration.

• We propose the ReRAM-based GNN co-design acceler-

ation framework, CoDG-ReRAM, to fundamentally ad-

dress the inherent communication problems in GNNs,

delivering both low latency and high accuracy.

• We propose a novel algorithmic optimization pipeline

for GCNs, which creates highly sparse and regular GCN

models that are friendly to ReRAM.

• We leverage the algorithm optimizations into hardware

design and come up with a more systematic approach to

map weights and feature matrices into ReRAM crossbars

to increase computational efficiency and reduce latency.

• Experimental results demonstrate that CoDG-ReRAM

reduces inference latency and energy consumption by

4× and 5.1× over SOTA ReRAM-based accelerators of

GCNs with a negligible accuracy loss.

To the best of our knowledge, this work is the first attempt

on algorithm-hardware co-design of ReRAM-based GCN ac-

celeration framework.

II. BACKGROUND AND RELATED WORKS

A. Resistive Random Access Memory

ReRAM memory technologies are non-volatile, with high

density, almost free of leakage power, and more immunity

to transient faults compared with traditional volatile DRAM

memories. They also have shown high, excellent speed switch-

ing and low power consumption [13], [35]. Compared to other

types of nonvolatile memories, ReRAM-based devices show

high scalability, superb multilevel cell storage capability, and

the possibility of low-cost 3D fabrication [13]. In the last

decade, there are extensive works that illustrate the results of

fabricated ReRAM memory cells [55], memory arrays [39],

and also fabricated ReRAM-based accelerators [6], [9], [43].

Moreover, constant progress has been made towards pushing

non-volatile memories to commercial products. For instance,

Micron and Intel jointly produced 3D Xpoint [19], [21].

B. Graph Convolutional Networks

As one of the most distinguished Graph Neural Network

(GNN) models, GCN [26] starts the trend of using neural

network methods in graph information extraction. There are

many other modalities based on message passing methods of

GraphCONV used in GNNs, e.g. GraphSage [20] and Graph

Isomorphism Network (GIN) [42].

As stated in [18], the forward computation flow of these

models generally contains two common phases: Aggregation
and Combination. During the aggregation phase, all nodes

gather and aggregate the features of their neighbor nodes

to update their own feature vectors. During the combination

phase, the GraphCONV layer builds up a local Multi-Layer

Perceptron (MLP) network to merge the updated feature-

vectors, which helps the model extract high-level abstraction

information.

Let define a graph G = (V ,E ) with N nodes vi ∈ V , edges

(vi,v j)∈ E , the adjacency matrix A∈ RN×N , the degree matrix

Dii =∑ j Ai j and the feature matrix X = {x1,x1, ...,xN}. We can

assume Â as the normalized A: Â = D−
1
2 AD−

1
2 and Wi as the

weight matrix of the ith layer. Using given parameters, the

forward procedure of a two-layer GCN model can be simply

formulated as follow:

Z = f (A,X) = ÂReLU(ÂXW0)W1 (1)

C. GCNs Accelerator

Researchers have proposed a series of high-performance

computer architecture for GNN acceleration focusing different

computational and communication problems in GNN training

and inference [1]–[3], [12], [16]–[18], [28], [44], [46], [49],

[50], [53].

In [3], Auten et al., first introduces the concept of GNN

hardware accelerator which can realize high performance in

tackling irregular data movement and intensive computation

for GNN inference by designing four specialized modules for

graph traversals, dense matrix operations, data scheduling, and

graph aggregations, respectively. HyGCN [44] is one of the

earliest GNN accelerators. Since the inference procedure of

GCNs contains two phases with different computation pat-

terns, HyGCN proposes a hybrid architecture with dedicated

modules for aggregation and combination, respectively. AWB-
GCN [16] is another early study of GCN acceleration. It

observes that the power-law distribution of the non-zeros in

the adjacency matrix results in workload imbalance issues. To
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solve this problem, the authors propose a workload autotun-

ing technique. Inspired by AWB-GCN, researchers discover

another basic problem in GNN acceleration is the poor data

locality, especially in graph aggregation.

Recently, I-GCN [18] is proposed to solve this problem.

I-GCN uses a new graph reordering algorithm named is-

landization and realized it with Intel FPGA. With islandization

algorithm, I-GCN can greatly improve the data locality of

graph aggregation at runtime to the point that almost all

data of the graph adjacency matrix, feature matrices, and

weight matrices are accessed from off-chip only once. EnGN
[28] introduces a unified architecture to accelerate GNNs and

enforces a ring-based network to perform aggregation. The

results produced by PEs are sent to the network where they are

aggregated. Researchers have also developed novel hardware

designs for training. Rubik [12] proposes an offline graph

reordering method to improve data locality. GraphACT [49]

uses heterogeneous platforms with CPUs and FPGAs and uses

pre-processing to find and skip redundant operations among

two-node shared neighbors.

G-CoS [53] is the first GNN co-search framework for

network structure and accelerator architecture. G-CoS can

automatically search for the matched GNN structures and

accelerators to maximize both task accuracy and acceleration

efficiency.

In addition to the efforts on designing hardware architecture

for GNN acceleration, GCoD [46] first proposes a co-design

framework targeting traditional devices which can alleviate

the aforementioned workload imbalance and poor data local-

ity problems and accelerate GNNs’ inference by effectively

enhancing graph regularity.

Besides the aforementioned digital accelerators for GNNs,

researchers have also investigated the potentials of using

mixed-signal designs to accelerate GCNs. REFLIP [22] builds

an in-situ ReRAM-based PIM acceleration engine for both

combination and aggregation kernels of GCNs. It presents

a novel flexible mapping scheme for crossbar architectures

by exploiting intra- and inter- vertex parallelism of GCNs.

PIM-GCN [10] proposes a ReRAM-based accelerator. To

take full advantage of the intra-vertex parallelism, it employs

dense data mapping as well as a search-execute architecture.

It also proposes two scheduling strategies to improve inter-

vertex parallelism and pipeline. PASGCN [45] optimizes the

PIMGCN further by proposing edge selection strategies that

are obtained in the training phase by learning downstream

feedback signals for each GCN layer separately and adaptively.

The selected edges are used in the inference time.

III. SOFTWARE FRAMEWORK

In this section, we present our newly proposed model

optimization pipeline that generates ReRAM-friendly GCN

models with superior regularity and sparsity with the focus

on the three optimizations including graph topology optimiza-

tion, ReRAM Customized model quantization, and Block-wise

model sparsification.

With the extensive use of model compression techniques

in all kinds of neural networks, semi-structured pruning and

quantization have been demonstrated that they can efficiently

accelerate deep learning inference while maintaining high ac-

curacy. On the other hand, recent works indicate the inference

speeds of GNN models can also be greatly and uniquely im-

proved via graph topology optimization. Therefore, to take the

advantages of both methods at the same time, we first propose

a new GCN model optimization pipeline. The key novelties in

our work are graph topology simplification/optimization and

model compression. To enforce the graph topology optimiza-

tion, we perform non-structural sparsification and polarization

with the adjacency matrices after partitioning the raw graph

into several subgraphs. Then, using the optimized graph, the

weight matrices of GCN models are further optimized with

semi-structural pruning and quantization based on ADMM,

which effectively makes GCN models ReRAM-friendly. In the

following subsections, we describe these three optimization

methods and explain how to implement and deploy them in

general GCN training process.

A. Graph Topology Optimization

The purpose of graph topology optimization is to reconstruct

the graph adjacency matrices to have higher sparsity with

regular non-zero distributions, which drastically enhances the

data locality of graph processing and further makes GCN

models more hardware-friendly. The proposed optimization

algorithm is inspired by the ones used in GCoD which demon-

strates that graph reconstructing can significantly improve the

performance of GNN inference. However, the algorithms used

in GCoD unfortunately lead to non-negligible accuracy degra-

dation which can be further enlarged after weight sparsification

and quantization are applied. To this end, on the top of the

algorithm designs proposed in GCOD, we propose a new graph

topology optimization algorithm to obtain adjacency matrices

with the same level of regularity but higher sparsity and higher

accuracy.

Same as GCoD, to improve the sparsity and regularity of

adjacency matrices, CoDG-ReRAM also adopts the subgraph

classification algorithm and the group partitioning algorithm

proposed in the graph topology optimization stage as shown

in Figure 2(a). We briefly introduce these algorithms below

for the convenience of readers. More details are omitted due

to space limitations and can be found in [46]. The subgraph

classification algorithm is mainly in charge of improving the

regularity of the graph adjacency matrix by clustering nodes

with homologous degrees into the same class. After alleviating

the irregularity of the adjacency matrix, the group partitioning

algorithm is used to decrease the boundary connections, which

helps reduce inter-group communication.

As mentioned above, the method used in GCoD leads to

severe accuracy degradation on GCN models. To maintain

GCN models’ inference accuracy, we further augment the

method described above by adding a novel inferred-class-

based negative edge pruning technique which is able to par-

tially filters out the edges that make negative contributions to
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Fig. 2. Illustrating (a) GCoD’s algorithm for graph reconstruction and (b) the
workflow of negative edge pruning

the classification results. By so doing, the models’ accuracy

and sparsity can be both improved. Besides, as negative edges

are normally the ones connecting different graph components,

we also observe that this optimization also helps create more

regular graph typologies, more clustered non-zero elements

in adjacency matrices, and clearer connections among graph

components.

Figure 2 (b) shows the workflow of the proposed inferred-

class-based negative edge pruning. From the last process of

previous graph reconstruction, we have trained a GCN model,

with which we can obtain inferred class of each sample Xi.

The inferred class can be formulated as:

YIn f erred Class|Xi = indexMAX (YXi|class1,YXi|class2, ...,YXi|classM),
(2)

where Yi|classM denotes the output probability of the ith sample

for class M. For two nodes with a connection, if their inferred

classes are different, we consider their connection as a negative

edge and will wrongly contribute to the task and hence prune

these negative edges from the graph. With this optimization,

we can not only avoid accuracy degradation but also even

obtain accuracy improvement for some datasets. Section V.A

will evaluate the benefits of this proposed method.

B. Column Balanced Block-wise Weight Pruning

Given a GCN model with N layers with Wi as the weight

matrix at the ith layer and bi as the bias at the ith layer, the

loss function for the N-layers GCN model can be formulated

as: L ({Wi}N
i=1,{bi}N

i=1). Then the problem of weight pruning

can be written as an optimization problem:

minimize
{Wi,bi}

L ({Wi}N
i=1,{bi}N

i=1)

sub ject to Wi ∈Ci, i = 1, ...,N,
(3)

where the Ci is the constraint set for the ith weight matrix

Wi. Specifically, the constraint set Ci restricts the number of

non-zero values in weight matrix Wi to be less than or equal

to Ti, where Ti is the desired number of non-zero value after

pruning in the ith layer.

However, obviously, the optimization mentioned above is

non-convex with combinatorial constraints, which means that

we cannot reach the global minimization via traditional gradi-

ent descent algorithms (e.g. SGD and Adam). Thanks to the

rapid development of the non-convex optimization methods,

we can efficiently solve it by using the Alternating Direction

Method of Multipliers (ADMM) framework which can get rid

of the combinatorial constraints. To help apply the ADMM

method to weight pruning, we define an auxiliary indicator

function as:

Ii(Wi) =

{
0 i f Wi ∈Ci

+∞ otherwise (4)

Then we can use an auxiliary variable Vi instead of Wi in the

non-differentiable terms and rewrite our optimization problem

to be:

minimize
{Wi,bi}

L ({Wi}N
i=1,{bi}N

i=1)+
N

∑
i=1

Ii(Vi)

sub ject to Wi ∈Vi, i = 1, ...,N.

(5)

Applying the augmented Lagrangian, the rewritten problem

can be divided into two subproblems by ADMM. We solve

each subproblem respectively and iteratively until reaching the

global solution. The first subproblem can be written as:

minimize
{Wi,bi}

L ({Wi}N
i=1,{bi}N

i=1)

+
N

∑
i=1

pi

2
‖W k+1

i −Vi +Dk
i ‖

2

F ,
(6)

where Dk
i = Dk−1

i +W k
i −V k

i and Dk
i is the dual variable which

will be updated in each epoch. In the first subproblem function,

the left term stands for the differentiable loss function of the

GCN model and the right term is a quadratic function that

is differentiable and convex. Therefore, without the combi-

natorial constraints in it, the first subproblem is similar to

the original GCN optimization problem and can be solved

efficiently via gradient descent algorithms (e.g. Adam). The

second subproblem can be formulated as:

minimize
{Ci}

N

∑
i=1

Ii(Ci)

+
N

∑
i=1

pi

2
‖W k+1

i −Vi +Dk
i ‖

2

F

(7)

Since gi(·) denotes the indicator function of Si, we can

conclude the solution to the second problem is

Ck+1
i = ∏

Ci

(W k+1
i +Dk

i ), (8)

where ∏Si denotes the Euclidean projection of the term

W k+1
i +Dk

i . Then the updated V k+1
i will be used instead of

V k
i in the first subproblem in the next epoch.

Furthermore, to enforce the weight matrices that can simply

be mapped to ReRAM, as Figure 3 shows, we adopt a

column balanced block-wise weight pruning algorithm which

can enhance GCN inference performance on ReRam devices

and make the resulting weight matrices have a similar sparse

pattern to the one in optimized adjacency matrices hence

283



Fig. 3. Illustrating the detailed pruning workflow of Column Balanced Block-
wise Weight Pruning with 0.33 pruning rate

simplifying the ReRAM hardware design. Assuming that the

weight matrix W has the shape n×m and setting the pruning

block size to be a× c, the weight matrix can be efficiently

decomposed into k sub-matrices where k = n/c. For each sub-

matrices Wk, we can divide it into l sub-matrices where l =
m/a. Finally the weight matrix W is separated into k× l blocks.

For each Wk, we set the values in the block with the lowest

l2 norm to be zeros. After pruning each Wk, the sub-matrices

W1,W2,W3, ...,Wk can be concatenated horizontally to compose

the pruned matrix Wpruned . Compared with other structural or

nonstructural pruning algorithms, column balanced block-wise

weight pruning algorithm greatly improves the regularity of the

weight matrix and provides high sparsity.

C. ReRAM Customized Weight Quantization

After enforcing the column balanced block-wise weight

pruning algorithm, we have obtained semi-structural pruned

weight matrices with 32-bit (or 64-bit) precision. Compared

to the models with original weight matrices, the current models

have the potential to provide a much superior performance of

GCN inference due to structural and clustered zeros. Until

now, there is only one problem that needs to be solved

before the optimized GCN models can be efficiently mapped

onto ReRAM crossbars – the models need to be quantized

with an acceptable loss of accuracy, otherwise, they cannot

be mapped and implemented on ReRAM. Fortunately, re-

searchers have proposed many efficient quantization methods

for DNNs. Among them, ADMM-based quantization has been

demonstrated to be highly efficient. Hence, in this work,

we select ADMM-based model quantization methods that are

normally used in DNNs, map them to GNN acceleration, and

demonstrate their efficiency with GNNs.

Similar to the weight pruning process, we build up a GCN

model with N layers and assume that the weight matrix for

the ith layer is Wi and the bias for the ith layer is bi. The

loss function for an N-layer GCN model can be written in

the following form: f ({Wi}N
i=1,{bi}N

i=1). Then the problem of

weight pruning can be written as an optimization problem:

minimize
{Wi,bi}

L ({Wi}N
i=1,{bi}N

i=1)

sub ject to Wi ∈Ci, i = 1, ...,N,
(9)

where the Ci is the constraint set for the weight matrix

Wi at the ith layer. In our work, we apply fixed K bit

pruning algorithms which means the values in the quan-

tized matrices should satisfy the requirement Wi, j ∈ Q, where

Q = {−2k−1 +1,−2k−1 +2, ...,2k−1−1}. Therefore, different

from the previous section, the constraint set Si here is that

all the values in weight matrices should be mapped to the

possible value set Q. Using the same algorithm for decompos-

ing non-differential problems, the optimization problem (i.g.

formula 3) in the weight quantization procedure can also be

divided into 2 subproblems (e.g. formula 6 and formula 7)

using different constraint sets mentioned above. Then, we can

conclude the optimal solution to subproblem 2 is to set every

element’s value to the closest possible quantized value and

then feed them into subproblem 1, where we can efficiently use

the gradient descent algorithm(e.g. Adam) to reach the global

optimization iteratively. Finally, the weight matrices’ values

will be mapped to the desired bit width while preventing the

accuracy from dropping significantly.

IV. HARDWARE FRAMEWORK

In this section, we introduce the architecture, mapping

mechanism, and the dataflow of the ReRAM-based GCN

mixed-signal accelerator. We explain how CODG-ReRAM

leverages the proposed software optimizations to build a

more efficient hardware design along with a more systematic

mapping solution.

A. Hardware Architecture

Due to irregular non-zero distribution in the weight and

feature matrices, various demeanour of unbalanced workloads,

different characteristics of the combination and aggregation

phases, massive vector-matrix multiplication operations, and

especially the huge and irregular off-chip data movement,

conventional DNN [33], [47], [48] and GCN accelerators

[16], [44], [46] fall short of providing satisfactory speedups.

Recently a few PIM designs such as PIM-GCN [10], PAS-

GCN [45], and REFLIP [22] address the aforementioned

issues; however, there is still vast space for improvement. The

reason is that the current PIM-based GNN works are almost

oblivious to algorithmic optimizations and try to address the

current issues with hardware-only procedures, which incurs

considerable hardware overheads.

As Figure 1 shows, the mixed-signal GCN accelerator

entails several tiles, which are connected to each other with

an on-chip mesh network. Each analog tile contains multiple

Multiply-Accumulate Units (MACs), three different eDRAMs

that hold values as crossbar inputs, crossbar weights, and

intermediate results as crossbar outputs. It also entails shift-

and-add units, activation, and pooling functions that are

connected with a shared bus. MAC units are made up of

DACs, ReRAM crossbars, ADCs, and shift-and-add units. The

CODG-ReRAM utilizes voltage/buffer and the current reducer

techniques recommended in [22] to save more power and area

due to the reduced overheads of DAC and ADCs.
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Fig. 4. The Hybrid mapping schemes in CoDG-ReRAM.

B. Mapping Procedure

As combination and aggregation phases in GCNs have

different demeanors, they have to be differently treated to

achieve high performance. To do so, we employ the same

MVM engine of crossbars but utilize different mapping mech-

anisms to handle combination and aggregation procedures.

Note that the proposed method is different from the one

used in GCOD that utilizes two-pronged engines for sparse

and dense workloads in combination and aggregation. Like

REFLIP [22], the eDRAM crossbar entails weight parameters

and vertex features in combination and aggregation phases,

respectively. Similarly, eDRAM Input holds vertex features

and edge data during combination and aggregation episodes.

By so doing, it is ensured that the hardware utilization is

increased considerably without imposing different engines

with significant overheads to handle these two procedures

separately.

Inspired by REFLIP [22], we employ a SIMT model and

parallelize workloads of a GraphCONV layer among different

tiles to enjoy inter- and intra-vertex data parallelism per layer.

The reason is that, unlike DNN engines, GCN accelerators

need to store both weights and graph data; however, they have

limited layers where the load intensity per layer is usually

high.

To map the parameters into crossbars, there are two distinct

ways: row-wise and column-wise. In the row-wise solution,

each node is loaded into crossbars only once and the edge data

are fed into crossbars in a row-wise manner. Therefore, there is

a chance that input edges become null. As a result, this method

suffers from feeding zero bits that do not contribute to the final

results [22], [48]. This happens especially frequently for the

sparser parts of the adjacency matrices. On the other hand, in

the column-wise mapping procedure, each node is normally

processed multiple times in crossbars and null edges are

usually abstained from being fed into crossbars. The column-

wise solution removes those zero-valued edges considerably,

however, it incurs significant parameter overheads [22].

To overcome the problems of both row-wise and column-

wise approaches, REFLIP recommends a hybrid approach

where row-wise schemes are adopted for vertices with a high

degree and column-wise ones are employed for vertices with

lower degrees. However, REFLIP employs an ad-hoc approach

to find a threshold and identifies high-degree and low-degree

vertices, which may lead to low hardware utilization especially

when processing vertices that are close to the threshold.

Unlike REFLIP, CoDG-ReRAM employs sparsification and

polarization of adjacency matrices in the algorithm optimiza-

tion to identify the proper mapping mechanisms. Our results

indicate that 27%, 32%, and 25% of Cora, Pubmed, and, Cite-

Seer adjacency matrices lead to denser sub-matrices, which

can be handled with the row-wise mapping scheme; while the

rest are sparser and are steered by the column-wise approach.

By so doing, in a more systematic way, CODG-ReRAM

increases resource utilization and computational efficiency of

ReRAM in accelerating GCNs.

The Crossbar Mapper takes the responsibility to control this

procedure during transferring parameters in combination and

aggregation stages. The mapper also decides which partial re-

sults should be added up to produce the correct results. Graph

optimization techniques lead to different classes/subgraphs

with different sizes as shown in Figure 4. Crossbar Mapper
estimates the workload sizes of dense subgraphs and tries to

distribute them among the row-wise crossbars evenly to create

better load balancing. This makes the mapping mechanism

more complex but brings better load balancing and higher

system utilization. It is noteworthy to mention that graph

optimization, weight pruning, and quantization mechanisms

reduce to workloads considerably and hence less data needs

to be mapped in crossbars.

Figure 4 illustrates the concept of CoDG-ReRAM mapping

procedure. The left-side visualizes the adjacency matrices after

applying the proposed algorithmic optimizations, while the
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right-side manifests the hybrid mapping mechanism.

Like previous works [10], [22], [51], [51], we use Compress

Sparse Row (CSR) and Compress Sparse Column (CSC)

formats for high- and low-degree vertices to maintain the

edges [10], [22]. We can then ensure sequential off-chip access

to edge data and reduce irregular and redundant accesses.

Due to the structure of the matrices in GCNs, we prioritize

combination over aggregation as it demands less computation

and converts both multiplications in A(X×W ) to MVMs that

can be handled by the analog engine of the crossbar very

efficiently.

V. EXPERIMENTS

In this section, we first evaluate the proposed software

optimization algorithms in terms of model accuracy and data

sparsity achieved after graph optimization, column balanced

block-wise weight pruning, and ReRAM customized weight

quantization are applied on different real-world and widely-

evaluated graph datasets. We then evaluate the efficiency of

the proposed ReRAM hardware by comparing the latency and

energy consumption of the CoDG-ReRAM and SOTA GNN

accelerators.

In particular, our evaluation uses a 2-layer GCN model

consisting of 16 hidden units based on three citation graph

datasets (i.e. Cora, CiteSeer, and Pubmed). The algorithm eval-

uation compares GNN models with different combinations of

optimizations with the raw baseline model. The hardware eval-

uation results are based on the optimized GNN models after

all optimizations are applied. The graph topology optimization

includes both structural optimization that is already used in

GCoD and negative-edge pruning that is newly added in this

work. For Column Balanced Block-wise Weight Pruning, the

pruning ratio is set to be 0.3. For ReRAM Customized Weight

Quantization, targeting bit widths are set to be 2, 4, and 8. All

models are trained on a 4 × NVIDIA 1080ti GPU server using

Pytorch-Geometric (PyG) framework.

We implement an in-house simulator to get the overhead

of the proposed ReRAM architecture and the baselines. The

tool employs Cacti [5], NVSIM [15], and PIM primitives

library [40]. The results of software optimizations are back

annotated to the hardware simulator. We are able to run the

tool in the mode of the design space exploration to get the area

and power of buffer, ReRAM cells, read and write latency and

energy, and size, power, and area of the crossbars. We can run

the tool in simulation mode to get execution time, energy and

throughput. To have a fair comparison with REFLIP, we use

the same parameters as REFLIP [22].

A. Algorithm Evaluation

As table I shows, our novel optimization algorithms can

greatly maintain high accuracy while applying structural graph

topology optimization and model compression algorithms to

the GCN models. Compared to the original model, we discover

that with our graph topology optimization algorithm, even

though the graph has been reconstructed to match the ReRAM

property, it can still achieve superior accuracy which is even

TABLE I
THE EXPERIMENTAL RESULTS OF EACH STEP

Accuracy (%)

Methods Cora Pubmed CiteSeer

Vanilla 81.1 79.1 70.2
(+) Graph Optimization 80.0 78.7 71.5

(+) CBB Weight Pruning 76.6 78.1 60.5
(+) Weight Quantization

2-bit 77.8 79.5 67.8
4-bit 79.8 78.6 70.5
8-bit 79.5 78.6 69.9

TABLE II
COMPARISON AMONG VANILLA, GRAPH OPTIMIZATIONS WITH AND

WITHOUT NEGATIVE EDGE PRUNING

Vanilla Without With

Dataset Cora

Number of edges 10556 9500(-10.0%) 8178(-22.5%)
Accuracy(%) —– 79.6 80.0(+0.4)

Dataset Pubmed

Number of edges 88648 79782(-10.0%) 69090(-22.0%)
Accuracy(%) —– 79.4 78.7(-0.7)

Dataset CiteSeer

Number of edges 9104 8192(-10.0%) 7476(-17.8%)
Accuracy(%) —– 70.3 71.5(+1.2)

higher than the raw graphs with no pruning applied for some

datasets. The accuracy improvement is from the proposed

negative-edge pruning. Table II further demonstrates this phe-

nomenon that cutting down the negative edges can effectively

enhance the accuracy by preventing the negative edges from

wrongly contributing to the classification tasks by comparing

our final models with the ones optimized by GCoD and the raw

model. Besides the high accuracy, the proposed graph topology

optimization technique also significantly reduces the number

of edges compared to both GCoD and raw models, which

benefits the computation of GCNs with not only ReRAM but

also other devices. Moreover, from the table I we can also

observe that the Column Balanced Block-Wise weight pruning

leads to accuracy degradation due to the constraints from

block pruning pattern which greatly improves the regularity

of the weight matrices. Fortunately, the ADMM-based weight

quantization algorithm not only helps us reduce the data width

but also effectively rescues the accuracy from the unavoidable

dilemma.

B. Hardware Evaluation

Table III compares the power and area results of CoDG-

ReRAM with REFLIP [22] and HyGCN [44]. Due to graph

optimization, pruning, and quantization (8bits vs 32bits), the

number of required crossbars and also the total number of

required tiles are significantly reduced. We utilize a 64 ×
64 crossbar array. Each MAC unit comprises 16 ReRAM
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Fig. 5. Comparing execution time of CoDG-ReRAM with other baselines

Fig. 6. The impact of each algorithmic optimization on execution time

crossbar arrays, while we use 8 MAC units per tile and 36

tiles. Accordingly, compared to REFLIP (HyGCN), the area

and power of the proposed accelerator are reduced by 35%

(39%) and 28% (37%), respectively.

Figure 5 compares the execution time of the CoDG-ReRAM

with GCOD [46], AWB-GCN [16], and REFLIP [22]. The

figure shows normalized results with Y axis using a loga-

rithmic scale and CoDG-ReRAM as 1 (hence not illustrated

in the figure). As the results demonstrate, CODG-ReRAM

outperforms these baselines by 19.5×, 78.4×, and 4×, respec-

tively. Since CoDG-ReRAM performs in-situ computation,

it reaches superior performance compared with GCoD and

AWB-GCN. Due to proposed algorithm optimizations and

more efficient mapping solutions, we are able to outclass

the REFLIF baseline as well. Figure 6 shows the impact of

assorted algorithm optimizations on the execution time. As it

can be observed, due to aggressive high-quality quantization, it

has the most impact on reducing execution time. Moreover, the

graph topology optimization plays a more important role than

pruning in the execution time reduction while applying the

pruning rate of 0.3. Those algorithm/hardware optimizations

also contribute to reducing energy consumption as Figure 7

illustrates. Compared with REFLIP, AWB-GCN, and GCOD,

the energy improvements are 5×, 196.6×, and 91.6×, respec-

tively.

TABLE III
COMPARING POWER AND AREA OF CODG-RERAM WITH REFLIP

REFLIP [22] HyGCN [44] CoDG-ReRAM
Power(W ) Area(mm2) Power(mW ) Area(mm2) Power(mW ) Area(mm2)
47.38 43.63 54.66 46.2 34.22 28.17

Fig. 7. Comparing energy consumption of CoDG-ReRAM with baselines

VI. RERAM-BASED GNN ACCELERATOR CHALLENGES

In this section, we talk about the challenges that need to be

addressed to have efficient ReRAM-based GNN accelerators.

Several of them will be also valid for other machine learning

accelerators.

A. Algorithm Perspective

Efficient full-stack software is a key that enables us to get

the maximum benefits of underline hardware. This is a missing

component in many GNN accelerator designs. This is helpful

as instead of addressing challenges at the hardware-level with

a significant cost, we can address them at the algorithm-

level [46]–[48] with orders of magnitude lower cost as we

showed in this paper.

The main components in a software stack are the program-

ming language and its compiler [11], [23], [27], [34]. We

need a programming language that allows designers to define

different requirements of the accelerators such as various types

of memories, the graph model, optimizations that need to be

employed, the location and the order in which these optimiza-

tions need to be applied, and etc [23]. Having an efficient

compiler that automatically maps the proposed GCN dataflow

into underline architecture and fills the gap between high-level

accelerator description and low-level execution engine is also

highly desired.

B. Hardware Perspective

Although ReRAM-based GCN accelerators show promising

results and capabilities, there are still problems that prevent

them to be extensively used in the commercial products.

Endurance is a fundamental problem of ReRAM memories. It

causes to have small crossbar array sizes (i.e., the maximum

size is 512× 512 [43]), which imposes crossbar to crossbar

communication cost. However, in recent years, there is a good

progress in improving ReRAM endurance [36]. In addition,

memory cells can only be written a few number of times before

they stop working. This can be mitigated by utilizing ReRAM

devices that endure more writes or employing architecture

techniques such as wear leveling [7], [38] that distribute

writes across all memory locations evenly. Another problem

is the ReRAM sneak currents, which can be alleviated using

techniques such as using access transistors (e.g., two-terminal

selector) and self-rectifying RRAM [24], [25].
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Besides the aforementioned problems, we also summarize

other three worth mentioning challenges in designing and

deploying ReRAM solutions for GCN acceleration. The first is

the size of ADC-size that contributes significantly to the area

and power consumption (58% of tile power and 31% of tile

area [33]). Recently researchers propose various solutions to

reduce the ADC size by leveraging hardware and software

techniques [4], [47], [48]. The second problem is that the

engine of these accelerators works in analog regime, which is

sensitive to noise and imperfections. Techniques such as noise-

aware training [29] and hybrid acceleration where important

weights are handled by digital cores are proposed to mitigate

this problem [8], [14]. One more challenge is the writing

cost in non-volatile memories. Unlike volatile memories, the

energy and latency associated with the non-volatile ones are

high. This is also why many architectures unfold all the tiles

and write all the weight parameters of all layers into ReRAM

crossbars at the beginning. Although it helps increase the

parallelism and throughput, it incurs hardware overhead.

We hope by having a full software stack along with ad-

dressing challenges associated with the hardware counterpart,

mixed-signal accelerators can be commercialized and em-

ployed extensively.

VII. CONCLUSION AND FUTURE WORK

This paper proposes, CoDG-ReRAM, a ReRAM-based

GCN acceleration framework with algorithm-hardware co-

design. On the algorithm side, CoDG-ReRAM is equipped

with three optimizations as follows: (1) a graph topology

optimization method with negative edge pruning to regular-

ize graph topology, improve the model accuracy, and re-

duce the computation demand and the number of edges of

graphs; (2) Column Balanced Block-wise Weight Pruning

to sparsify weight matrices with the semi-structural sparse

pattern; and (3) ReRAM customized Weight Quantization

to provide high-quality quantization so that the optimized

model can be mapped onto ReRAM devices. Overall, the

newly proposed model optimization pipeline delivers more

regular sparse matrices with higher sparsity and lower bit-

widths while maintaining high accuracy. On the hardware side,

we take advantage of the algorithm optimization results to

provide a more systematic mapping scheme, reduce latency

and increase the computation efficiency of the ReRAM-based

GCN accelerator. Conclusively, CoDG-ReRAM provides 4×
speedups over SOTA ReRAM-based GNN accelerators with

negligible loss of accuracy.

In future work, we will further explore the scalability of

CoDG-ReRAM by examining it with larger graphs and sizes

of crossbars. Besides, the proposed algorithm optimizations

especially the graph topology optimization insert extra work-

load imbalance to the graphs which limits the performance

of our work. Therefore, it is worthy to study how to fun-

damentally address the graph-level workload imbalance issue

within ReRAM crossbars. Last, CoDG-ReRAM focuses on

static graphs. In the future, we will try to extend its support

to evolving graphs and spatio-temporal graph models.
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