
A Temporally Reconfigurable Multi-Accelerator Parallel
Architecture for Reuse and Throughput Oriented Computing

Masab Ahmad, Halit Dogan, and Omer Khan
University of Connecticut, Storrs, CT, USA

{masab.ahmad, halit.dogan, khan}@uconn.edu

ABSTRACT
Machine learning and graph applications are highly hetero-
geneous in the algorithmic and input data behaviors, leading
to performance variations in today’s parallel accelerator ar-
chitectures. Various parallel machines target such applica-
tions with either throughput computing using GPU’s massive
threading, or exploit data reuse using strong multicore cores
and on-chip caching of data. There are ample benefits in
both architectures exploiting parallelism, throughput, and
data reuse. However, a single machine architecture has not
been explored to exploit both throughout and reuse capabili-
ties in a temporally reconfigurable setup. This work builds a
multi-accelerator parallel architecture that supports variable
hardware threading capabilities to support reuse or through-
put computing paradigms at runtime. The existing QUARQ
architecture is extended with per-core fine-grain hardware
multithreading support to enable the throughout mode of op-
eration. However, the reuse mode is efficiently supported in
the underlying QUARQ architecture using hardware cache
coherence for efficient data movement on-chip, and a novel
moving compute to data model for efficient synchronization
between threads. Results show that the extended QUARQ
architecture delivers the right performance situationally, i.e.,
between reuse and throughput modes of operation, the best
performing mode is highly algorithm and input dependent for
the target machine learning and graph processing domains.

1. INTRODUCTION
Target applications utilizing graph and machine learning

have risen rapidly over the past decade [1] [2]. However,
software variations in such benchmarks and inputs make it
hard to fully exploit performance. Graph applications tend
to require high throughput computing to allow processing
of millions or even billions of vertices and edges with high
performance. On the other hand, machine learning applica-
tions require floating point computations and benefit from
high data reuse on chip. Such benchmark variations perform
best using different architectures and concurrency selections
that are either designed for throughput or reuse bound com-
puting. Mapping a benchmark to the right architecture thus
becomes challenging, as programmers need to tune concur-
rency choices. It has been shown that performance variations
can be exploited if provided with a heterogeneous computing
platform [3]. Applications with high data reuse, such as ma-
chine learning workloads perform better on machines with
better single threaded floating point performance and stronger
caching [4,5]. However, path planning graph workloads, such
as the Bellman-Ford algorithm can be highly parallelized
on throughput machines that offer thousands of concurrent

Algorithms

Problems

Graphs

Heterogeneous

Accelerator

System
Complexity

vs. Accuracy

Changing Input

Graphs lead to

variations

Various optimal

algorithms

Heterogeneity requirements

vary with various

benchmarks and inputs

Models

Figure 1: The Benchmark-Input-Implementation-
Architecture Mapping Problem.

threads (e.g., GPUs) [6]. As shown in Figure 1, this problem
comprising benchmarks, inputs, and parallel implementations
on heterogeneous architectures needs to be computed with
near real-time efficiency. Thus, an architecture is desirable
that exploits both throughput and reuse capabilities.

Today’s single chip parallel machines utilize unary archi-
tecture types, e.g., Nvidia or AMD GPUs, or Intel multicores.
GPU architectures have weaker on-chip caches but stronger
threading and off-chip memory bandwidth capabilities, which
allow for high throughput processing [7]. Large multicores,
such as Intel’s Xeon Phi expose less threading but offer strong
cache hierarchies, hardware cache coherence, and atomic op-
erations for synchronization to efficiently support on-chip
data access and reuse. Our initial work integrated these two
architectures spatially to develop a multi-accelerator setup
for efficient graph processing [8, 9]. However, it is hard to
utilize both architectures due to significant data movement
overheads between multiple accelerators.

This paper proposes a temporally reconfigurable heteroge-
neous architecture that exposes both throughput and reuse
computing capabilities to the programmer. The proposed
architecture is based on the QUARQ multicore architecture,
which is extended with fine-grain threading and floating-point
SIMD capabilities to support throughput computing. In the
baseline QUARQ architecture, programmability is supported
using shared memory paradigm, and efficient data move-
ment controls are supported using directory-based hardware
cache coherence. Moreover, QUARQ features a novel mov-
ing compute to data model for efficient thread synchroniza-
tion that is based on explicit messaging capabilities between
cores [10, 11]. The proposed extension to QUARQ archi-
tecture incorporates variable threading with efficient register
context swapping, and selective private cache bypassing ca-
pabilities. This allows the architecture to map a single thread
per core for reuse mode, while map a variable number of

1

MulticoreGPU
FP FP FP FP FP

FP FP FP FP FP

FP FP FP FP FP

GDDR5 (Shared Memory)

No Coherence

Large Registers

More Threads

Weak Cores

Cache Coherence

Better Cache Hierarchy

Less Threads

Strong Cores

Highly Parallel

Throughput Oriented

Instruction Level Parallel

Reuse Oriented

Performance

Predictor

Benchmark – Input

Characteristics

Multi-Accelerator Heterogeneous Architecture

Figure 2: Spatial Incorporation of Throughput and
Reuse oriented accelerators.

Performance Predictors

Machine Variables (M), Benchmark variables (B), Input variables (I)

17

Input Neurons

20

Output Neurons

Input Graph

characteristics (I1 - I4)

Benchmark Characteristics

(B1 – B13)

Internal Hidden Layers/Neurons

4 Layers

32 Neurons/Layer Inter-Accelerator Choice

(M1)

Intra-Accelerator Choices

(M2 – M20)

Deep Learning Neural Network Predictor

F(M1, M2, M12) = W1(B1)4 + W2(B2)7 + W3(B3)5 + W4(B4)4+ W5(B5)6 +

.. + w13(B13)3 + W6(I1)7 + W7(I2)6 + W8(I3)5 + W9(I4)2 + 16

Non-Linear Regression Equation:

Figure 3: Performance Predictors for the Multi-
accelerator Architecture.

threads per core to reconfigure the system in throughput com-
puting mode. We envision the selection of throughput or
reuse mode of operation using the novel performance pre-
dictor that our prior work explored in the context of spatial
multi-accelerator architecture [8, 9]. Prototype analysis on
graph and machine learning benchmarks show that better
performance is achievable by selecting the right mode of op-
eration for each benchmark. The achieved performance with
the extended QUARQ architecture is shown to be competitive
with state-of-the-art GPU and multicore machines.

2. MULTI-ACCELERATOR ARCHITECTURE
As throughput and reuse oriented machines exist individ-

ually, they can be spatially integrated to architect a hetero-
geneous setup. Our work, HeteroMap [9], integrates two
machines (a GPU and a large scale multicore) on a common
main memory (shown in Figure 2). The motivation for such
a platform is that certain workloads perform well on GPUs,
while others perform well on multicores. Graph workloads
that are highly parallel benefit from the increased threading
capabilities of GPUs, while machine learning workloads re-
quiring floating point operations and data reuse benefit from
multicores that implement hardware protocols for efficient
on-chip data access.

A multi-accelerator platform exposes a humongous amount
of concurrency choices within and across parallel machines.
Therefore, scheduling for optimality in real-time situations
becomes a challenging problem. HeteroMap selects concur-
rency choices as shown in Figure 2, where the performance
predictor sits between the two machines and solves com-
plex relationships to pick the right accelerator for the right
benchmark-input combination. As shown in Figure 3, ma-

Register

File

Tightly

Coupled

Memory

(DTCM)

Local

L2 Cache

Architecture Tile

NoC to other tiles

Thread Scheduler

Core Pipeline

L1 Cache

Register File

Single Thread

Whole DTCM,

Register file, and

L1 cache,

at single thread’s

disposal

Stack AccessReg

Stack

Figure 4: Proposed architecture for reuse mode of oper-
ation.

chine learning and regression models are utilized to reason
about relationships between benchmark-input variables and
accelerator parameters [8]. These models take in benchmark-
input-machine characteristics, and predict architectural choices
to be deployed for the multi-accelerator setup.

The spatial integration of multiple parallel machines in
HeteroMap exposes the challenge of managing the data move-
ment overheads between machines. Moreover, the aggregate
utilization of the system is low in such a setup as both ma-
chines may not be utilized simultaneously. This is further
magnified by the expanded form factor of the system in terms
of area and power footprints. Acknowledging these chal-
lenges, this paper proposes a temporally reconfigurable multi-
accelerator architecture that morphs between throughput and
reuse computing modes.

3. EXTENDING QUARQ FOR REUSE AND
THROUGHPUT COMPUTING

The proposed architecture is built on top of the QUARQ
multicore architecture [10]. QUARQ is a single-chip tiled
multicore architecture that is extensible to 1000-cores scale.
The tiles are interconnected using a 2-D mesh network, and
shared memory data access is supported using the scalable
directory-based hardware cache coherence protocol. More-
over, QUARQ implements a novel moving compute to data
model to accelerate thread synchronization. This synchroniza-
tion model utilizes in-hardware explicit messaging between
cores to move computations towards data, thereby improving
synchronization by overlapping communication with other
useful work. Moreover, the moving compute model exploits
data locality better than the traditional atomic instruction
based synchronization that suffers from shared data ping-
pong between cores. These capabilities in the QUARQ archi-
tecture make it suitable for reuse oriented computing, where
a single thread per tile maps to the underlying RISC-V based
compute pipeline, and exploits the two-level cache hierar-
chy for efficient data access. To further exploit data reuse,
QUARQ implements a tightly coupled memory (DTCM) that
keeps the top of stack of the mapped thread local, thus avoid-
ing accesses to the level-1 private cache. Figure 4 shows the
baseline QUARQ architecture for the reuse mode of opera-
tion. To support throughput computing, QUARQ is extended
with fine-grain multithreading capability in each tile with fast
context switching. Depending on the needs of the algorithm

2

Register

File

Local

L2 Cache

Architecture Tile

NoC to other tiles

Thread Scheduler

Priority Queue Scheduling

L1
R

e
m

o
te

 M
is

s

Core Pipeline

Multi-threading for

Throughput Mode

Selective L1 Bypassing

Register Slice

Swapped on

thread switch

L1 Cache

Two Register Files for Faster Switching

DTCM Stack

Register

Partitions

Stack

Access

Figure 5: Proposed architecture for throughput mode of
operation.

and input data, the number of threads per tile can be varied
to tradeoff between reuse and throughput modes. The details
of the throughput mode are outlined in in Figure 5, and de-
scribed next.

Fine-grain Multithreading is implemented by supporting
multiple contexts on the same tile (core). Contexts are worker
threads, and swapped in and out of the the register file of the
compute pipeline. Moreover, thread contexts require addi-
tional register space, which is acquired by using parts or all of
the DTCM. However, in reuse mode, DTCM is fully utilized
to keep top elements of the stack for the mapped thread. This
space is reconfigured to map and store multiple thread con-
texts and a smaller portion of the stack in DTCM during the
throughput mode of operation. Additional register contexts
reduce space for the stack, showing a tradeoff with increasing
number of threads. The size of the DTCM in the baseline
QUARQ is restricted to 8 KB. Therefore, assuming a context
size of 32 64-bit registers in RISC-V ISA, a maximum of
32 threads can be supported for storage in the DTCM. A
switching hardware is assumed to support near-ideal latency
for swapping threads between the DTCM and the register file
of the compute pipeline. One option is to keep two register
files, one to switch in the thread to be activated on the tile,
while the other to hold the thread that is being deactivated and
swapped out to DTCM. A fast one-way multiplexing logic
is needed to swap a thread context from DTCM to the reg-
ister file that is being activated. However, the movement of
thread being swapped out can be hidden while the new thread
performs its work. This paper assumes a single cycle thread
swapping delay, and a microarchitecture implementation of
such mechanism will be evaluated as future work.

Thread Switching policy is dependent on active thread’s in-
struction count, cache misses, and synchronization related
explicit messaging stalls. Unless a high latency event triggers
a thread switch, a thread is switched by default after execut-
ing a fixed number of instructions (200 is used in this paper).
A simple round-robin switching policy is implemented, in
which the current thread is switched with thread+1, or the
next thread ready for execution. Thread switching is also
done on L1 remote misses, i.e., L1 cache misses that do
not hit in the local L2 cache slice. These misses are served
by a remote L2 cache slice or off-chip DRAM, all involv-
ing access through the on-chip network. This is similar to

mechanisms used in GPUs, where many threads are virtually
mapped onto a single core. The large number of threads
make many data accesses, while thread switching hides the
latency by overlapping with computations from other threads.
The synchronization related explicit messaging stalls in the
QUARQ’s moving compute to data model also trigger thread
switch since packets may take up to several tens of cycles
before reaching their destination cores. This paper models a
prototype thread switching mechanism, however other meth-
ods such as switching with priority are left as future work.

Selective Private L1 Cache Bypassing: The throughput
mode of operation is expected to map many threads on a
single tile, which effectively increases the private working
set for the L1 cache. However, the L1 cache is assumed to
be small since it needs to be low latency (single cycle ac-
cess). Selectively bypassing the L1 cache has been explored
to avoid cache pollution and thrashing [12]. Bypassing the
L1 cache can be determined statically on the basis of applica-
tion data structures, or dynamically based on the data type or
program counter based heuristics. We envision the proposed
architecture to exploit selective bypassing of the L1 caches,
however this is left as future work and not evaluated in this
paper.

3.1 Execution Model
The proposed architecture exposes reconfigurable reuse

and throughput modes of operation, which must be selected
when executing workloads. Multi-threading levels, L1 cache
bypassing, and other architectural choices may be changed dy-
namically in this architecture. Once a particular benchmark-
input combination is complete, the next combination is sched-
uled accordingly based on its characteristics. This model is
expected to work well with streaming graph inputs or ma-
chine learning models. Our future work will explore prior
work on HeteroMap [9] to build an accurate and fast perfor-
mance predictor to select the right mode of operation in the
proposed temporally reconfigurable architecture.

4. METHODOLOGY
The proposed architecture is implemented using an in–

house industry–class simulator and the associated RISC-V
toolchain. A futuristic tiled multicore processor with a two–
level coherent private L1, shared L2 cache hierarchy per core,
and on–chip interconnection X–Y routing–contention net-
work models, is evaluated. Each single-issue core is mapped
spatially to either a service or a worker thread based on the
corresponding explicit messaging model. The default archi-
tectural parameters used for evaluation are shown in Table 1.
Explicit messaging instructions use gcc extended asm blocks
to direct the compiler to use specific registers. The models
used here are ported from the Graphite multicore simula-
tor [13]. In addition, the explicit messaging instructions,
and the related protocol overheads are integrated into perfor-
mance models. For workloads where cores are distributed
into service and worker cores, multi-threading is only done
on the worker cores, as preliminary results showed that multi-
threading service cores does not improve performance.

4.1 Completion Time Metrics
Each benchmark is run to completion, and the completion

time and energy consumption of parallel region is measured.
The parallel completion time is broken down into the follow-

3

Architectural Parameter Simulator
Number of Cores 256 RISC-V @ 1 GHz
Compute Pipeline per Core In–Order, Single–Issue

Memory Subsystem
L1–I Cache per core 16 KB, 4–way Assoc., 1 cycle
L1–D Cache per core 16 KB, 4–way Assoc., 1 cycle
L2 Inclusive Cache per core 64 KB, 8–way Assoc.
Directory Protocol Invalidation–based MESI, ACKwise4
DRAM Controllers 8 Contr., 10 GBps per Contr./ 100ns

Electrical 2–D Mesh with XY Routing
Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention, 64 bit Flits

(Infinite input buffers)

Explicit Communication
Send queue per core 16 words (4-entry)
Receive queue per core 64 words (16-entry)

Table 1: Architectural parameters for evaluation.

ing categories:
1) Compute Stall is the time spent retiring instructions, wait-
ing for functional unit (ALU, FPU, Multiplier, etc.), and the
stall time due to mis-predicted branch instructions.
2) Memory Stall is the stall time due to load/store queue ca-
pacity limits, fences, and waiting for load completion and L1
instruction cache misses.
3) Communication Stall is the stall time due to explicit mes-
saging instructions. The send instruction is a non–blocking
instruction that only stalls in case the tile’s network router
flow control temporally prevents injection of new messages
into the network. The sendr is a blocking send instruction
that requires an explicit reply. This is used in barrier syn-
chronization, and offers a potential from throughput mode to
exploit other threads to overlap with useful work. The receive
instruction is a blocking instruction that stalls until a message
is received in the service core’s receive queue.

4.2 Benchmarks
Two graph workloads, Single Source Shortest Path (SSSP)

and Triangle Counting (TC) are evaluated using the the Cali-
fornia road network (CA) input graph from the SNAP repos-
itory [14]. An inception style machine learning workload,
SqueezeNet [10] is also evaluated that classified an image
from the ImageNet repository [15].

Real machine execution times of these workloads are also
compared to the proposed architecture. The utilized ma-
chines are GTX-970 GPU, an Intel Core i7 multicore CPU,
and an Intel Xeon Phi 7120P multicore. For GPU implemen-
tations, SSSP is picked from Pannotia [6], and TC is adopted
from CRONO [16]. For Xeon Phi and Intel i7 implemen-
tations, both graph workloads are taken from CRONO [16].
SqueezeNet is acquired from Caffe [17], and an open source
Intel implementation is used for results on Intel i7 machine [18].
However, the GPU implementation is adopted directly from
Caffe [17].

5. PRELIMINARY RESULTS
To understand how throughput and reuse computing modes

confer with workload scalability, each workload is evaluated
on the proposed architecture by varying multithreading capa-
bility from a single thread to 64 threads per tile.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

256-1 256-2 256-4 256-8 256-16 256-32 256-64C
o

m
p

le
ti

o
n

 T
im

e

Cores – Multi-threading

Instruction Memory Comm

42ms

Figure 6: SSSP-CA scalability analysis.

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

256-1 256-2 256-4 256-8 256-16 256-32 256-64C
o

m
p

le
ti

o
n

 T
im

e

Cores – Multi-threading

Instruction Memory Comm

5.1ms

Figure 7: TC-CA scalability analysis.

SSSP: Figure 6 shows the completion times for the SSSP-CA
workload with various multi-threading counts. For the eval-
uated 256 cores setup, the workload scales up to 8 threads
per core. At a single thread per core, memory stalls dominate
the completion time breakdown. As more threads are added
per tile, the reduction in memory stalls happen since threads
are switched to hides access latency with other useful work.
In single thread mode, the workload exhibits thread work
imbalance due to dissimilar work among the worker cores,
as well as service and worker cores. With multithreading,
the barrier synchronization switches threads due to communi-
cation stalls, and in turn creates more load balanced execu-
tion for worker cores. Therefore, with multithreading both
memory stalls and communication stalls are seen to improve.
SSSP-CA scales to 8 threads, which shows its throughput
mode orientation. Compared to the GPU implementation
from Pannotia [6], which takes 47 milliseconds, the proposed
QUARQ’s throughput mode takes 42 milliseconds. The eval-
uation on reuse oriented machine, Xeon Phi shows that SSSP
takes 228 milliseconds. It is clear that SSSP benefits greatly
from throughput oriented computing.

TC: We also take the case where the throughput mode does
not help, and reuse mode is the right choice for best perfor-
mance. Figure 7 shows the performance scaling breakdown
for Triangle Counting (TC). It is seen that TC only benefits
from reuse mode, and does not scale with additional threads.
This happens because TC suffers from high inter-thread com-
munication due to fine grain synchronization on shared data
structures. This is best handled with the moving compute
to data model in QUARQ and the underlying interactions
of explicit messages and hardware cache coherence to ex-
ploit data access reuse with a single thread per tile. When
more threads are added to each tile, the communication stalls
rapidly increase, thereby degrading performance. In compar-
ison to other machines, the QUARQ architecture achieves
5.1 milliseconds, compared to 67 milliseconds for the GTX-
970 GPU, and 133 milliseconds for the Xeon Phi multicore.
This show a more than 10× advantage using QUARQ’s reuse
computing mode.

4

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

256-1 256-2 256-4 256-8 256-16 256-32 256-64

C
o

m
p

le
ti

o
n

 T
im

e

Cores – Multi-threading

Instruction Memory Comm

3.0ms

Figure 8: SqueezeNet scalability analysis.

SqueezeNet: As seen in Figure 8, SqueezeNet scales to 4
threads per tile. It is observed that compute is still a primary
component in the completion time distribution, thus further
scalability to higher core counts is expected for this work-
load. Although multithreading enables some reductions in
memory stalls as thread counts are increased, the communi-
cation stalls start increasing as soon as more than one thread
is utilized per tile. SqueezeNet is an optimized implementa-
tion that load balances work between barrier synchronization
events. Therefore, switching threads with multithreading do
not present much opportunities to hide communication stalls
since all threads tend to reach barrier synchronization is close
temporal proximity. However, additional threads now par-
ticipate in barrier synchronization, and thus communication
stalls increase with the increasing number of threads. For real
machine comparisons, SqueezeNet takes 3.5 milliseconds on
the Intel i7 multicore, and more than 2.5 milliseconds on the
GPU. On the proposed architecture, SqueezeNet takes 3.0
milliseconds, which translates to ∼400 frames per second
classification of images.

In summary, it is shown that the proposed QUARQ archi-
tecture can exploit workloads that require both throughput
and reuse computing modes. The proposed architecture is
also shown to outperform real-machine setups with equiva-
lent or higher compute capabilities. Multithreading capabili-
ties, along with the hardware cache coherence and moving
compute to data synchronization models allow the extended
QUARQ architecture to achieve higher performance in a sit-
uational setting. In future work, we plan to optimize more
workloads from the domains of graph, machine learning and
database processing, as well as architectural optimizations
such as thread scheduling and placement strategies. We also
plan to utilize and extend the HeteroMap’s performance pre-
dictor for the proposed temporal multi-accelerator architec-
ture. Selectively bypassing the private caches will also be
explored to better utilize the available cache capacity for large
number of threads in the throughput computing mode.

6. CONCLUSION
This paper shows that concurrency choices exist in graph

and machine learning applications across various architec-
tural capabilities. These choices primarily coincide with a
workload being either throughout or reuse oriented, which is
correlated with workload-input intrinsics. This work extends
the QUARQ architecture that exploits reuse characteristics
using hardware cache coherence and a novel moving compute
to data synchronization model. The architecture is extended
with reconfigurable multithreading capabilities to enable an
efficient throughput computing mode. Results on three work-
loads show that the extended QUARQ architecture delivers
best performance situationally. Some workloads only benefit
from reuse computing mode, i.e., single thread per tile, while

others benefit from a varying degree of multithreading per
tile.

7. ACKNOWLEDGMENTS
This work was supported in part by Semiconductor Re-

search Corporation (SRC). We would like to thank José A.
Joao of ARM and Christopher Hughes of Intel for their re-
views and feedback. We also thank Brian Kahne of NXP for
his continued support on the QUARQ architecture.

8. REFERENCES
[1] S. Iqbal, Y. Liang, and H. Grahn, “Parmibench - an open-source

benchmark for embedded multiprocessor systems,” Computer
Architecture Letters, vol. 9, no. 2, pp. 45–48, Feb 2010.

[2] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer,
M. Smelyanskiy, M. Girkar, and P. Dubey, “Can traditional
programming bridge the ninja performance gap for parallel computing
applications?” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 440–451.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, Oct 2009, pp. 44–54.

[4] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“Unlocking ordered parallelism with the swarm architecture,” IEEE
Micro, vol. 36, no. 3, pp. 105–117, May 2016.

[5] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 367–379.

[6] S. Che, B. Beckmann, S. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in IEEE Int.
Symph. on Workload Characterization (IISWC), Sept 2013.

[7] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus:
Where are the bottlenecks?” in Workload Characterization (IISWC),
2014 IEEE International Symposium on, Oct 2014, pp. 140–149.

[8] M. Ahmad, C. J. Michael, and O. Khan, “Efficient situational
scheduling of graph workloads on single-chip multicores and gpus,”
IEEE Micro, vol. 37, no. 1, pp. 30–40, Jan 2017.

[9] M. Ahmad and O. Khan, “Exploiting heterogeneous parallel
accelerators to improve performance in graph analytics, src techcon,”
2017.

[10] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan,
“Accelerating graph and machine learning workloads using a shared
memory multicore architecture with auxiliary support for in-hardware
explicit messaging,” in 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2017, pp. 254–264.

[11] H. Dogan and O. Khan, “Quarq: A novel general purpose multicore
architecture for cognitive computing, src techcon,” 2017.

[12] G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive
cache coherence protocol,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser. ISCA ’13.
New York, NY, USA: ACM, 2013, pp. 523–534.

[13] J. E. M. et. al., “Graphite: A distributed parallel simulator for
multicores,” in High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, Jan 2010, pp. 1–12.

[14] J. Leskovec and et. al., “SNAP Datasets: Stanford large network
dataset collection,” 2014.

[15] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, June 2009, pp. 248–255.

[16] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono : A benchmark
suite for multithreaded graph algorithms executing on futuristic
multicores,” in Proc. of IEEE Int. Symposium on Workload
Characterization, ser. IISWC, 2015.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New York,
NY, USA: ACM, 2014, pp. 675–678.

[18] OpenCV, “https://github.com/opencv/opencv/wiki/dnn-efficiency,”
2017.

5

	Introduction
	Multi-Accelerator Architecture
	Extending QUARQ for Reuse and Throughput Computing
	Execution Model

	Methodology
	Completion Time Metrics
	Benchmarks

	Preliminary Results
	Conclusion
	Acknowledgments
	References

