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Abstract—Graph neural networks have seen tremendous adoption
to perform complex predictive analytics on massive and un-
structured real-world graphs. The trend in hardware accelerator
designs has identified significant challenges with harnessing
graph locality and workload imbalance due to ultra-sparse and
irregular matrix computations at a massively parallel scale. This
paper addresses the load imbalance challenge and identifies that
state-of-the-art either introduces complex specialized hardware
to auto-tune for load-balanced execution at runtime or relies
on software-only approaches that exploit parallelism. We pro-
pose a novel software-only load-balancing sparse matrix-matrix
(SpMM) algorithm that unlocks fine-grain parallelism while
maintaining controlled need-based targeted synchronizations to
achieve robust performance scaling. The MergePath-SpMM al-
gorithm achieves superior performance using commercial off-
the-shelf GPU processors when compared to state-of-the-art
hardware accelerators and software-only implementations.

Index Terms—Sparse matrix-matrix, parallel algorithm,
merge-path, graph processing, neural networks, GPU, multicore

I. INTRODUCTION

Graph neural networks (GNNs) extend classical deep learn-
ing techniques to real-world graphs. GNNs operate on graph
structures by aggregating features of connected nodes and
edges and then transforming the aggregated embeddings using
a neural network model. Recently, many GNN models that
combine external features into graph structures have been
proposed, such as Graph Convolutional Networks (GCN) [13],
GraphSAGE [9], Graph Isomorphism Networks (GIN) [26],
and Graph Attention Networks [23]. The efficiency of GCNs
has seen rapid adaptation in many real-world graph pro-
cessing applications. For example, Pinterest’s recommender
system [28] trained a GCN model with high accuracy for
7.5 billion examples on a graph with 3 billion nodes and
18 billion edges. Despite the success in training massive
real-world graphs, performing inference on the GCN models
under tight latency constraints has emerged as a hard problem.
Since 2020, there has been a resurgent trend in GPU and
hardware accelerators for exploiting parallelism in GCNs [2],
[6], [7], [10], [12], [14]–[16], [25], [27], [29], [30]. However,
due to the highly sparse and irregular nature of the real-
world graphs, exploiting data locality and balanced workload
execution remains elusive.

Inference in a GCN model requires iterative traversal of the
graph nodes and edges using two primary phases: aggregation
and combination. The computation pattern of the combination
phase is similar to that of conventional neural networks.

Open-source at https://github.com/cag-uconn/MergePath-SpMM
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Fig. 1: Graphs from diverse application domains exhibit
power law behavior that leads to load imbalance challenges
when exploiting parallelism.

However, the aggregation phase relies on the graph structure,
which is often sparse and irregular. HyGCN [27] and similar
designs [2], [12] adopt the intuitive design strategy where ag-
gregation and combination are realized using separate sparse-
sparse (SpGEMM) and sparse-dense (SpMM) matrix multi-
plication engines. This design strategy suffers from under-
utilization of either engine due to its graph input depen-
dence, resulting in inter-engine workload imbalance. Hardware
accelerators, such as AWB-GCN [6] and GROW [10], as
well as GPU accelerators, such as GNNAdvisor [25] unify
the hardware design for both phases to mitigate the under-
utilization problem. These works process moderately sparse
feature matrix (X) multiplication with the dense and small
weight matrix (W), followed by multiplying the output with
the highly sparse and irregular adjacency matrix (A). This
results in a workload-efficient computation paradigm that uses
a unified SpMM engine.

Power law (or heavy-tail) graphs are ubiquitous and arise
in the internet, knowledge, genomics, brain mapping, cyber-
security, social networks, and many other real-world applica-
tions [6], [21], [25]. The adjacency matrix of these graphs
is proportional to the number of nodes, but the power-law
distribution of non-zero elements results in an ultra-sparse and
irregular matrix, as shown in Figure 1. These graphs exhibit
arbitrarily-long evil rows (non-zero elements usually clustered
in just a few rows of A) that lead to workload imbalance
when rows or columns are distributed among the processing



elements. Moreover, the output of the SpMM kernel operating
on the X and W matrices is dense and proportional to the size
of the graph nodes. Therefore, when the highly irregular A
matrix performs the SpMM kernel with the dense input matrix,
the data access locality is challenged. This exacerbates the
workload imbalance problem due to irregular memory access
patterns.

State-of-the-art hardware accelerators, AWB-GCN and
GCoD [6], [29] identify processing evil rows as a major
bottleneck for exploiting parallelism in GCNs with thousands
of processing elements. They adopt the row-wise parallel
SpMM implementation and introduce a dedicated hardware
auto-tuner to overcome the evil rows challenge. The auto-
tuner identifies the evil rows at runtime and allocates mul-
tiple processing elements to each evil row for load-balanced
processing of its workload. This specialized hardware support
leads to underutilization due to input graph dependence and
takes away resources that can otherwise be utilized to exploit
parallelism for other rows. We argue that exploiting massive
parallelism without specialized dedicated hardware can unlock
extreme scalability potential. Is it possible to implement the
load-balanced distribution of non-zero elements in the input
matrix using a software-only SpMM design?

Recent works have explored GCN acceleration frameworks
for GPUs that aim to address the load imbalance challenge
using node and edge partitioning at a fine granularity to expose
maximum parallelism [5], [25]. GNNAdvisor [25] incorporates
an input-driven approach that partitions the nodes among user-
parametrizable neighbor partitions of a few non-zeros each.
This requires an extension to the compressed sparse row (CSR)
format of the adjacency matrix. The neighbor partitions are
further distributed among thread chunks along the embedding
dimension to maximize parallelism for the node embeddings.
At the lowest level, a thread operates on a single embedding
dimension of a non-zero. Although GNNAdvisor exposes max-
imum parallelism among threads, each thread is unaware of the
number of sharers for each row in the output matrix. Therefore,
each output row update must be performed atomically, leading
to fine-grain synchronizations. Such uncontrolled parallelism
burdens communication between threads, resulting in lower-
than-expected performance scaling at high thread counts.

Research on sparse matrix-vector (SpMV) multiplication
aims to balance parallelism and synchronizations in the first
matrix since the dimension of the second input is a vector.
Merge-path [18] is a state-of-the-art decomposition algorithm
that requires no preprocessing overhead, reordering, or exten-
sion of the CSR format for the non-zeros in an SpMV kernel
setting. It tightly bounds the workload assigned to each thread.
It uses a row-wise summation of partial matrix-vector dot
products and introduces a novel decomposition to overcome
the performance challenges arising from irregular row lengths.
The merge-path algorithm exploits the row pointer array of the
CSR format, where each thread performs a two-dimensional
search to isolate the corresponding region within each list that
comprises its share. It produces an equitable partition that
ensures that no single thread is overwhelmed by assignment
to (a) arbitrarily-long rows or (b) an arbitrarily-large number

of zero-length rows. At the end of parallel execution, merge-
path SpMV executes a sequential phase where it updates
the output values for the rows that are split across multiple
threads. This sequential phase is tolerable for SpMV since
each accumulation is a single matrix multiplication. However,
for SpMM execution, where multiple matrix multiplications
are accumulated for each non-zero, the cost of serial execution
hampers parallelism. To solve this challenge, we propose a
novel MergePath-SpMM algorithm that aims to exploit the
parallel execution of partial row accumulations on high core
count GPU and CPU processors.

The proposed MergePath-SpMM parallel algorithm does not
require hardware support, thus it decouples the GCN accelera-
tor design to focus solely on exploiting massive parallelism. It
deploys a novel parallelization strategy that does not incorpo-
rate any serial phase. Instead, it explicitly tracks and executes
rows that are split across multiple threads using atomic oper-
ations. Moreover, it tracks rows that are completely assigned
to a single thread and avoid using atomic updates for these
rows. The performance scaling potential is demonstrated using
a massively multithreaded GPU. The evaluation shows that the
MergePath-SpMM unlocks massive fine-grain parallelism in a
load-balanced manner to achieve robust performance scaling
for both regular and power law graphs. It outperforms the
GNNAdvisor baseline for all evaluated dimension sizes of
the dense input and output matrices. Furthermore, MergePath-
SpMM requires no preprocessing, reordering, or extension of
the sparse input matrix.

II. BACKGROUND AND MOTIVATION

Graph neural networks analyze the graph’s structure and
learn the characteristics of nodes, edges, or even the entire
graph [1]. GCNs [13] apply convolutions recursively to extract
meaningful information from the graphs. During the aggrega-
tion phase, each node iteratively pulls its neighboring nodes’
features and updates its feature vector. The new feature vectors
are transformed into hidden feature vectors using a neural
network in the combination phase. After l layers, each node’s
output feature vector encapsulates the unique structural infor-
mation of the node’s n-hop neighborhood. σ(A × X (l) ×W (l))
represents the forward propagation of a single convolution
layer, l. Consider a graph G = (n,m), and let n denote the
number of nodes and m the number of edges. X (l) ∈ Rn× f

denotes the feature matrix of the nodes in layer l, where f
is the number of features in each node. A ∈ Rn×n denotes
the graph’s adjacency matrix and represents the connectivity
information within the graph. W l ∈ R f×d is the weight matrix
during layer l obtained after training the network. σ is a non-
linear activation function such as ReLU or sigmoid.

The adjacency matrix A is ultra-sparse since each node
is connected to a few nodes in most real-world graphs. X
matrix is moderately sparse since the nodes do not have valid
values for all possible features. On the other hand, W contains
the model parameters and is a dense, small matrix compared
to A and X. State-of-the-art GCN accelerators [6], [7], [10],
[25] implement A×(X×W) multiplication order. During this
computation, the second SpMM kernel, A× XW is challenging
due to the ultra-sparsity of the adjacency matrix, A. Moreover,



due to the unstructured nature of the location of non-zeros in
the A matrix, the data accesses of the dense XW matrix are
also irregular. All GCN layers require the multiplication of
A with their respective XW matrices; therefore, we focus on
efficiently performing A × XW computation. During parallel
execution, the two input matrices can be accessed in row
or column order, leading to inner, row-wise, column-wise,
or outer product combinations of data flow. These strategies
affect the data reuse, on-chip memory requirements, and output
computation order. The prior GCN accelerators [6], [7], [10],
[22], [25] use the row-wise strategy for the A × XW kernel
due to its efficiency and low on-chip memory requirements.

In the row-wise strategy [8], the sparse rows of the A matrix
are distributed among the threads. The column index of each
non-zero element of a row determines the row index of the XW
matrix and computes the partial product for the corresponding
output matrix row. The partial products generated by each non-
zero element of a row are accumulated in the corresponding
output row. The following equation shows the mathematical
expression for calculating row i, where the dimensions of
matrix A and XW are n × n and n × d, respectively.

C[i, :] =
n

∑
j=0

A[i, j]∗XW [ j, :]

The two popular parallelization strategies for row-wise
are row-splitting and nnz-splitting [18], [25]. In the row-
splitting strategy, an equal number of rows are split into
contiguous chunks and divided among the threads. Since a
single thread processes a complete row, the output does not
require synchronizations for partial product accumulations.
Thus, all GCN hardware accelerators [6], [7], [10], [29] utilize
the row-splitting strategy. However, this strategy creates a
load imbalance among threads as the number of non-zero
elements varies significantly for different rows. Only AWB-
GCN and its subsequent variants I-GCN and GCoD explicitly
recognize the load imbalance problem due to the power-law
distribution of non-zeros. Their solution requires hardware
support to detect rows with a disproportional number of non-
zeros (evil rows) and assigns multiple processing elements to
process the evil rows. This hardware-centric approach is not
applicable to a general-purpose processor. Moreover, hardware
specialization leads to under-utilization, taking away resources
from exploiting parallelism for other rows.

The second parallelization strategy, nnz-splitting aims to
divide the number of non-zero elements equally among the
threads to solve the load-imbalance problem. Existing GCN
frameworks for massively parallel GPU machines implement
some form of nnz-splitting [5], [17], [24], [25]. Among
these prior works, GNNAdvisor delivers state-of-the-art per-
formance as it aims to harness atomic operations that make
better use of the GPU’s local private caches and mitigate
contention across threads. However, the indiscriminate use of
atomic operations for all updates to the output rows imposes
an undue burden on communication between threads. Another
prior work, merge-path [18] explicitly tracks the non-zeros
of rows assigned to a thread as partial or complete rows.
For complete rows, the output updates do not require atomic
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Fig. 2: Performance comparisons of existing hardware
accelerator (AWB-GCN) and GPU implementations
(GNNAdvisor, merge-path, row-splitting) for representative
power-law graphs computing the GCN A× XW SpMM
kernel. Nell uses a hidden dimension size of 64, while
others 16.

operations. However, for partial rows, it performs a serial
phase to update the output. The serial phase works well for
the SpMV kernel since each accumulation is a single matrix
multiplication. However, for SpMM execution, where multiple
matrix multiplications are accumulated for each non-zero, the
cost of serial execution hampers parallelism severely.

To gain insights into the performance implications of
row-splitting and nnz-splitting parallelization strategies, Fig-
ure 2 shows the kernel completion times for the AWB-
GCN [6] hardware accelerator that implements 4096 multiply-
accumulate processing elements and executes at 330MHz on
an FPGA accelerator setup. For a fair comparison, a GPU
with equivalent computational units (NVidia Quadro RTX
6000) is used to evaluate row-splitting, GNNAdvisor [25] and
merge-path [18] implementations. The evaluation is done using
four representative power-law graphs with their characteristics
outlined in Table II (Section IV). The Cora, Citeseer, Pubmed,
and Nell graphs are chosen because their A×(XW) execution
times for AWB-GCN are reported in Figure 15 of [6].

The Cora and Citeseer are small graphs that do not stress
on-chip memory. However, they exhibit irregular memory
access with load imbalance stemming from uneven distribution
of non-zeros among the rows. AWB-GCN distributes all
rows among its processing elements to exploit parallelism.
Moreover, it implements a hardware auto-tuner to dedicate
a sufficient number of processing elements to sequentially
manage each detected evil row. With this setup, AWB-GCN
delivers the best-performing execution times (4.3µsec for Cora
and 6.3µsec for Citeseer) since it fully exploits the available
hardware parallelism for all rows in these small graphs. The
GNNAdvisor aims to also exploit the available hardware
parallelism by executing a fixed number of neighbor-grouped
non-zeros in each GPU warp1 [4]. However, multiple warps
may operate on the same row, thus requiring each output
update to be performed using atomic operations. GNNAdvisor

1A warp is a set of 32 threads within a thread block. The NVidia
GPUs starting with the Volta architecture enable independent thread
scheduling among the threads in a warp. This feature allows intra-warp
synchronization patterns such that all or a subset of threads in a warp
execute independent code.



overcomes the memory stalls induced by the atomic operations
by maximizing the number of active warps. However, for these
small graphs, the number of warps is constrained to ensure
enough work is assigned to each warp (i.e., the number of non-
zeros). This results in GNNAdvisor not being able to exploit
enough parallelism compared to AWB-GCN, resulting in ∼2×
lower performance for these graphs. The merge-path [18]
implementation aims to eschew the use of atomic operations
across all output updates. To accomplish this, it executes all
complete rows in parallel but all partial rows are processed in
a serial phase. The serial phase severely limits the amount of
exploitable parallelism, resulting in the worst performance for
these two graphs.

The Pubmed graph is not as irregular as other evaluated
graphs, and it has enough rows and non-zeros to expose plen-
tiful parallelism in both AWB-GCN and the GPU implementa-
tions. Thus, even row-splitting implementation shows compet-
itive performance against AWB-GCN. The GNNAdvisor also
exploits the available parallelism by spawning ∼4000 warps.
Moreover, the parallelism in processing the corresponding
atomic operations is better managed as compared to AWB-
GCN since the GPU incorporates efficient multi-threading
support to hide long latency memory stalls. Consequently, GN-
NAdvisor outperforms AWB-GCN for this graph. The merge-
path implementation favors avoiding atomic operations over
exploiting parallelism. Thus, its performance only improves
up to a few hundred warps, which is not sufficient parallelism
to match the execution times achieved by GNNAdvisor.

The Nell graph has even more rows and non-zeros that lead
to much more parallelism in the GPU as compared to the
fixed amount of parallelism exposed by AWB-GCN. Moreover,
it exhibits extreme power-law behavior that leads to severe
load imbalance. The AWB-GCN somewhat mitigates the load
imbalance challenge as seen by its improvement over row-
splitting. However, due to the lack of exploitable parallelism,
its auto-tuner hardware has very limited success. On the other
hand, GNNAdvisor spawns sufficient warps on the GPU to
exploit parallelism and hide the latency of long-latency atomic
updates to deliver ∼6× performance gains over AWB-GCN.
Even merge-path outperforms AWB-GCN since it optimizes
the processing of evil rows. However, the merge path severely
limits the amount of parallelism and it is unable to compete
with the performance of GNNAdvisor.

Overall, this analysis concludes that GNNAdvisor’s ap-
proach to maximizing parallelism on the GPU leads to sig-
nificant performance gains. However, to overcome the load
imbalance stemming from the evil rows, the indiscriminate
use of atomic operations may not always lead to the best
performance. To co-optimize for parallelism and effective
utilization of atomic operations, we propose to explicitly track
the processing of complete and partial rows. Our approach
unlocks massive parallelism for complete rows while only
using atomic updates for partial rows to achieve superior
performance scaling.

III. MERGEPATH-SPMM PARALLEL ALGORITHM

This section first describes merge-path [18] that creates
a load-balanced distribution of work among threads for a

sparse matrix-vector (SpMV) kernel. At the end of the parallel
execution, merge-path SpMV executes a sequential phase
where it updates the output values for the rows that are split
across multiple threads. This sequential phase is tolerable in
SpMV since each thread operates on a single dimension vector.
However, for SpMM, each thread operates on multiple dimen-
sions of the dense input and output matrices. Depending on the
hardware capabilities to exploit dimension-level parallelism in
each thread, any serialization for these computations hampers
parallelism. To overcome these performance bottlenecks from
the serial phase, a novel parallel SpMM algorithm is proposed
that combines the use of atomic operations to unlock paral-
lelism and eschew unnecessary synchronizations by only using
atomic updates for partial rows.

A. Overview of Merge-path for SpMV

Algorithm 1 Merge-path [18] algorithm
1: for all (threads) do
2: merge items = total nodes+number o f nonzeros
3: items per thrd = (merge items+num threads)/num threads
4: cost start = min(items per thrd ∗ core id,merge items)
5: cost end = min(items per thrd ∗ core id +1,merge items)
6: start coord = BINARYSEARCH(cost start, RP, nnz, total nodes)
7: end coord = BINARYSEARCH(cost end, RP, nnz, total nodes)

Consider the sparse n × n adjacency matrix A is represented
in the CSR format [20], where the Column Pointer(CP)
array contains the column indices of all non-zeros. The array
Row Pointer(RP) is of length n + 1 and encodes the index in
CP where the given row starts. Also, consider the second n ×
1 vector that is represented in coordinate COO format, where
RP array stores the coordinate positions for all non-zeros. The
Algorithm 1 outlines the pseudo-code to determine the load-
balanced assignment of non-zeros in the sparse input matrix
for the merge-path algorithm [18]. It first establishes the total
length of the merge path, which is the sum of rows and non-
zeros in the adjacency matrix (Line 2). It then computes a
per-thread number of merge items by dividing the total length
of the merge path by the number of threads (Line 3). This
is the merge-path cost that the algorithm aims to accomplish
per thread. Each thread then computes its lower and upper
bound target costs (Lines 4-5). A thread’s cost translates to
a diagonal in the logical 2D grid, which contains the points
having coordinates (i, j) such that i+ j = cost. Each coordinate
is of the form (i, j), where i is the row number and j is the
non-zero number. The goal is to find the first point in the
diagonal where RP[i] ≥ j. This point along the diagonal can be
found by performing a constrained 2D binary search along the
diagonal (Algorithm 1, lines 6-7). The result of the algorithm
is the coordinates of the point that satisfy the constraint. Each
thread gets two sets of coordinates, one for the lower and one
for the upper bound. All threads process rows and non-zeros
in the range of their start coordinate to end coordinate.

To gain a better understanding of the merge-path algorithm,
Figure 3 presents a representative example of a sparse matrix
with 10 rows and 16 non-zeros. The algorithm creates a logical
2D grid, where the row offset represents the x-axis, and the y-
axis is the non-zero value indices in increasing order. Travers-



Thread 1 : start_coord (0,0), end_coord (1,6) à start = 0, end = 0, start_nz = 0, end_nz = 6 
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Thread 2 : start_coord (1,6), end_coord (3,11) à start = 0, end = 2, start_nz = 6, end_nz = 0 

Thread 3 : start_coord (3,11), end_coord (7,14) à start = 2, end = 6, start_nz = 0, end_nz = 0 

Thread 4 : start_coord (7,14), end_coord (11,16) à start = 6, end = 10, start_nz = 0, end_nz = 0 
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Fig. 3: Representative example of distributing adjacency
matrix among four threads using Merge-path.

ing along the x-axis in this grid implies processing a row,
whereas traversing along the y-axis implies processing each
non-zero element. The goal is to find an equitable distribution
of non-zeros among threads such that the cost of reading a
row and processing non-zeros is taken into consideration. The
algorithm computes a per-thread merge-path cost of 7 for four
threads since the total length of the merge path is 26. The
threads 1 to 4 compute the start costs of 0, 7, 14, and 21,
and the end costs of 7, 14, 21, and 27 respectively. The green
diagonal line represents the respective diagonal for each thread
in Figure 3. In this example, thread 2 searches for a start cost
of 7 to find a valid start coordinate. The first coordinate (0,
7) implies that RP[0] results in row offset of 0 that is smaller
than the non-zero value index of 7. This breaks the rule and
the search continues along the diagonal. The next coordinate
(1, 6) satisfies the rule since RP[1] results in a row offset of
8 that is greater than the non-zero value index of 6 for this
coordinate. Thread 2 also searches for its end cost of 14 and
determines (3, 11) as its end coordinate. Using the start and
end costs, thread 2 computes its work assignment as 2 rows
(i.e., rows 1 and 2) using the x-coordinates, and 5 non-zeros
(i.e., non-zero indices 7 to 11) using the y-coordinates.

After the merge path’s start and end coordinates are deter-
mined, each thread executes the sparse matrix-vector computa-
tions along its merge path. It accumulates the non-zeros for the
merge items of the complete rows first and then accumulates
any non-zeros for the partial row shared with the next thread.
Before ending parallel execution, each thread saves its running
total and row ID for subsequent fix-up. Finally, the algorithm
executes a serial phase where it updates the output values
for all the rows that span multiple threads. As discussed
in Section II (cf. Figure 2), this sequential phase severely
hampers parallelism in SpMM kernel execution. Next, we
present a novel parallel algorithm for SpMM that retains the
load-balanced assignment of non-zeros from the merge path
algorithm but also exploits parallelism across rows that are
shared among multiple threads.

Algorithm 2 Parallel MergePath-SpMM Algorithm
First input is a sparse n × n adjacency matrix A represented in compressed
CSR format. The second input is a dense n × m matrix XW represented in
coordinate COO format [20].
1: for all (threads) do
2: if start nz 6= 0 then
3: if start row = end row and end nz 6= 0 then
4: T [0, :] = ∑

end nz
j=start nz A[start row,CP[ j]]∗XW [CP[ j], :]

5: Atomic: C[start row, :]+ = T [0, :]
6: Return
7: else
8: T [0, :] = ∑

RP[start row+1]
j=start nz A[start row,CP[ j]]∗XW [CP[ j], :]

9: Atomic: C[start row, :]+ = T [0, :]
10: start row+= 1
11: if end nz 6= 0 then
12: T [1, :] = ∑

end nz
j=RP[end row] A[end row,CP[ j]]∗XW [CP[ j], :]

13: Atomic: C[end row, :]+ = T [1, :]
14: for row ∈ start row to end row do
15: C[row, :] = ∑

RP[row+1]
j=RP[row] A[row,CP[ j]]∗XW [CP[ j], :]

B. Exploiting Parallelism with MergePath-SpMM

The coordinates obtained from the merge-path algorithm do
not specify whether a thread needs to process partial rows.
The start coordinate only indicates the row and non-zero IDs
a thread must start its processing. Similarly, the end coordinate
specifies the row and non-zero IDs for the thread to stop. We
introduce two additional variables to track whether the non-
zeros assigned for processing start and end are partial rows.
If the start coordinate’s non-zero ID is equal to the row offset
of the start row, then the start row assigned to the thread is a
complete row. Otherwise, the start row is a partial row. The
variable start nz is set to the non-zero ID for a partial row,
and 0 to identify it as a complete row. Similarly, if the end
coordinate’s non-zero ID is equal to the row offset of the end
row, then the end row is a complete row. Otherwise, the end
row is a partial row. The variable end nz is set to the non-zero
ID for a partial row, and 0 to identify it as a complete row.
For example, thread 2 in Figure 3 computes that its start row
1 is a partial row. Therefore, it sets its start nz variable to
the non-zero ID of 6. On the other hand, its end row 2 is a
complete row that results in setting the end nz flag to 0.

Each thread executes the proposed Algorithm 2 to process
the assigned complete and partial rows using the start row,
end row, start nz and end nz variables. A thread can have
a combination of a partial start row, a partial end row, and
complete rows. The algorithm first checks start nz, and its
non-zero value indicates that the start row is a partial row
(Line 2). A thread may have only one partial row or multiple
rows to process. A partial row only case is determined by
checking if only a single row is assigned to the thread with
a valid range of non-zeros to process (Line 3). Each non-
zero of the partial start row from matrix A performs the
matrix multiplications with all non-zeros (dimensions) of the
corresponding row in the dense input matrix XW. The results
are accumulated in a thread-local output storage (Line 4).
The partial output is then atomically accumulated in the
corresponding output for start row (Line 5). Since the thread
is assigned to process a single partial row, the thread safely
returns (Line 6). However, the thread may be assigned more



rows while the first assigned row is a partial row (Line 7). In
this case, all non-zeros of the partial start row from matrix A
perform matrix multiplications (Lines 8-9). However, the first
assigned row is marked processed (Line 10), and the thread
continues processing the remaining rows.

A thread may have multiple assigned rows to process,
and it is possible to have a partial row at the start and the
end of the assignment. Therefore, after processing a potential
partial start row, the algorithm checks end nz whose non-zero
value indicates that the end row is a partial row (Line 11).
Each non-zero of the partial end row from matrix A performs
the matrix multiplications with all non-zeros (dimensions) of
the corresponding row in the dense input matrix XW. The
results are accumulated in a thread-local output storage (Line
12). The partial output is then atomically accumulated in the
corresponding output for end row (Line 13). At this point,
the thread has completed processing all partial row(s), and
must continue processing the remaining complete row(s) in the
range [start row, end row). Since this thread is the only one
processing complete rows, their outputs are updated without
requiring atomic operations (Lines 14-15).

Algorithm 2 creates a load-balanced execution of non-
zeros in an SpMM kernel, unlocking the potential for massive
thread-level parallelism. However, the atomic operations for
output updates may hamper the performance scaling potential.
We make a key observation that the atomic operations are
limited to start and end partial rows in our algorithm. More-
over, each thread maintains two thread-local arrays, T[0,:] and
T[1,:] that accumulate their matrix multiplications locally and
only atomically update the corresponding output rows once
(cf. Lines 5, 9, 13).

C. Determining Thread Count in MergePath-SpMM
The SpMM kernel operates on dense input and output matri-

ces whose width must match the size of the hidden dimensions
for the neural network model. Since the hidden dimensions
vary within and across graph neural network models [13],
[23], [26], a range of dimension sizes must be considered.
A large dimension size implies that multiple multiplications
and accumulations are processed for each non-zero assigned
to a thread. These operations can be performed serially or in
parallel depending on the available hardware-level parallelism.
In modern parallel processors, these computations are well
suited for single instruction, multiple data (SIMD) execution.
Therefore, it is important to map threads to the SIMD units
such that the architectural capabilities of the SIMD unit are
taken into consideration. When the dimension size is equal
to the SIMD unit’s capability to process each dimension in
parallel, then each thread can be mapped to a SIMD unit.
However, when the dimension size is smaller, a one-to-one
mapping of thread to SIMD unit leads to under-utilization of
SIMD hardware, resulting in diminished parallelism. Similarly,
when the dimension size is greater, a one-to-one mapping of
thread leads to over-utilization of SIMD hardware, resulting
in increased serializations. It is imperative to consider the
mapping of threads to SIMD hardware when determining
the number of threads for the proposed MergePath-SpMM
algorithm.

1) Dimension Size Matches SIMD Unit Lanes: In this
scenario, each dimension of a thread is assigned to a lane
in the SIMD unit to exploit the available parallelism. In a
multi-threaded, throughput-oriented parallel processor (such as
a GPU), multiple threads are spawned to exploit thread-level
parallelism. However, the thread count must be determined
so that each thread performs enough work to amortize the
overhead of creating and managing that thread. The number
of threads is determined by dividing the total length of merge-
path (merge items in Algorithm 1) with the cost of merge-
path (item per thrd in Algorithm 1). Here, the merge-path
cost is a programmable parameter that is set to achieve a
desirable amount of work per thread. A lower cost implies
an increasing number of threads. However, each thread is
allocated a smaller number of non-zeros to execute which leads
to each thread processing more non-zeros as partial rows (more
atomic operations). On the other hand, a higher cost leads
to a lower number of threads, but each thread benefits from
operating on an increased number of complete rows that do not
require atomic operations for output updates. Therefore, tuning
for the appropriate merge-path cost optimizes the trade-off
between parallelism and synchronizations. The default setting
for this parameter is determined empirically using a sensitivity
study in the evaluation section.

In graphs with a relatively small number of rows and non-
zeros, it is possible that the number of computed threads
is too low to exploit the available parallelism. To mitigate
this scenario, the merge path cost is decreased to ensure a
minimum number of threads are spawned on the system. When
the computed threads are below a threshold (e.g., 1024), the
total thread count is set to the threshold value.

2) Dimension Size Greater than SIMD Unit Lanes: In this
scenario, the number of dimensions to process in each thread
exceeds the available hardware lanes in the SIMD unit. This
leads to serialization of processing the assigned work, which
diminishes parallelism. We propose to break the processing
of dimensions across multiple threads such that each thread
executes the dimensions that match the number of lanes in the
SIMD unit. For example, the NVidia GPU used in this paper
supports 32 lanes of SIMD execution in a single warp. If the
dimension size is 64, each thread is executed using two warps.
Here, the first warp executes the first 32 dimensions while the
second warp executes the last 32 dimensions.

The proposed approach leads to an increased number of
warps in the GPU since each thread is replicated across warps
to ensure a one-to-one mapping of each dimension to a SIMD
lane. Therefore, the thread count can be decreased to increase
the merge-path cost for each thread, which leads to a decrease
in the number of atomic operations. To optimize this trade
off between synchronizations and parallelism, the merge-path
cost must be appropriately tuned. The default setting for the
merge-path cost parameter is determined empirically for a
given dimension size when it exceeds the number of lanes
in the SIMD unit.

3) Dimension Size Smaller than SIMD Unit Lanes: When
the number of dimensions per thread is smaller than the
available lanes in the SIMD unit, the hardware is under-utilized



leading to diminished parallelism. In modern parallel proces-
sors, the SIMD capabilities are increasingly programmable so
that the SIMD unit is able to execute multiple independent
threads simultaneously. For example, the Volta and later gener-
ations of NVidia GPU architectures enable independent thread
scheduling among the threads in a warp. A set of threads
are mapped to a single warp in such a way that a subset
of the 32 SIMD lanes operates on the dimensions of each
thread. To maximize the use of available SIMD parallelism,
we propose to map multiple threads to the same SIMD unit.
If the dimension size is 16, two threads execute on a single
warp. The first thread occupies the first 16 lanes while the
second thread occupies the last 16 lanes of a warp.

The proposed approach leads to a reduced number of warps
in the GPU since multiple threads are executed within a warp.
The reduced parallelism leads to diminished performance
scaling. The total thread count can be increased to increase
parallelism. However, this results in a reduced merge-path cost
for each thread, which leads to an increase in the number
of atomic operations. Therefore, tuning for the appropriate
merge-path cost must be done to optimize this trade-off
between parallelism and synchronizations. Again, the default
merge-path cost parameter is determined empirically for a
given dimension size when it is lower than the number of
lanes in the SIMD unit.

D. Applicability of MergePath-SpMM

Online versus Offline: The proposed merge path algorithm
aims to create a load-balanced distribution of work to achieve
scalable parallelism. However, it comes at a nominal schedul-
ing cost that is minimal in static schedulers like the row-
splitting technique. For a set of inferences on a given graph,
the adjacency matrix may remain stationary or change over
time. Therefore, it is possible to consider both online and
offline settings. In an online setting, the graph keeps evolving,
or a new graph is processed on each inference. Therefore,
the MergePath-SpMM schedule needs to be computed for
each inference. However, if the adjacency matrix remains
stationary across multiple instances, the schedule is computed
once and re-used across subsequent inferences. We consider
both execution models in the evaluation. However, the offline
setting is used as default since the baseline GNNAdvisor
framework considers the graph to be pre-processed into user-
parameterizable neighbor partitions.
Power law versus Structured Graphs: What happens in
graphs that do not follow the power law distribution? For
structured graphs, parallelization techniques other than row-
splitting may lead to better performance. Therefore, a closed-
source NVidia’s cuSPARSE parallel implementation library is
also used as a baseline SpMM kernel for evaluation.

IV. METHODOLOGY

A. GPU, Kernels, and Metrics

The performance evaluation is done using the NVidia
Quadro RTX 6000 with 24 GB GPU memory, 672 GB/sec
memory bandwidth, and 72 symmetric multiprocessors (SMs)
with a total of 4608 CUDA cores operating at 1.44GHz.

Number of Cores 1024 Single-threaded, In-Order @ 1 GHz
Memory Subsystem

L1–I, LD–D Cache per core 4 KB, 4–way Assoc., 1 cycle
Shared L2 Last-Level Cache 8 KB per-core slice (8MB total)
Directory Protocol Invalidation-based MESI, Limited-4
Num. Memory Controllers 32
DRAM 320 GBps bandwidth, 100ns latency

Electrical 2–D Mesh with XY Routing
Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention, 64 bit Flits

(Infinite input buffers)

TABLE I: 1000-core simulator parameters for evaluation.

The proposed MergePath-SpMM kernel is compared against
the GNNAdvisor [25] and the NVidia’s cuSPARSE SpMM
kernels. The GNNAdvisor framework is updated with the
proposed MergePath-SpMM kernel for its evaluation. The
kernel execution time is measured using NVidia’s nvpro f
profiling tool.

GNNAdvisor allows the user to set the neighbor-group
(NG) partition size, which determines the number of warps
to be executed on the GPU. The default setting uses the
average graph degree as the NG size in GNNAdvisor. The time
required to pre-process the graph to generate partitions for the
GNNAdvisor kernel is not included in the reported execution
times. The MergePath-SpMM uses the strategy described in
Section III-C to set the number of warps for each input graph.

GNNAdvisor supports processing different dimension sizes.
In case of dimension size matching the number of SIMD
lanes, it utilizes all lanes when executing a warp. When the
dimension size is greater than the number of SIMD lanes, it
packs all lanes with a subset of the dimensions and serializes
the execution of the remaining dimensions in a single warp.
However, when the number of dimensions is smaller than the
available lanes in a SIMD unit, it under-utilizes the GPU
and only uses the lanes that match the dimension size. To
better exploit the available hardware parallelism, we propose
to extend GNNAdvisor to execute multiple NG partitions per
warp when the dimension size is smaller than the number of
SIMD lanes. For example, when the dimension size is 16,
one NG partition occupies the first 16 lanes while another
NG partition occupies the last 16 lanes of a warp. This
optimization is included as GNNAdvisor-opt in the evaluation.

B. Large Core Count Multicore Simulations

To gain architectural insights into the performance scaling
potential in a large multicore setting, we utilize the MIT
Graphite multicore simulator [19]. The simulator front-end
is updated to support the RISC-V instruction set architecture
using the Architecture Description Language (ADL) based
functional models [3], [11]. The performance models from
Graphite are tailored to support up to 1024 cores. Each
core implements a physically distributed private-L1, shared-
L2 cache hierarchy, and a 2D mesh on-chip network with X-Y
routing to support data accesses and synchronizations among
cores. The system implements distributed memory controllers
at the chip boundary to exploit parallelism across DRAM ac-
cesses. The cache hierarchy size is configured to closely match



the total on-chip memory of the GPU used for evaluation. Each
core implements a SIMD execution unit capable of executing
four 16-bit vector operations. This configuration is used to
closely match the 4K multiply-accumulate units in the baseline
GPU. See Table I for the detailed architectural configurations.

The MergePath-SpMM kernel is compared against GN-
NAdvisor. Each multi-threaded kernel spawns the number of
threads to match the core counts of the processor model. For
each matrix kernel, the parallel completion time is measured,
i.e., the time spent in the parallel region of the matrix kernel.
The completion time is further broken down into compute and
memory access latency components to gain deeper insights
into performance scaling trends.

C. Input Matrices

All evaluated SpMM kernels use the default dimension
size of 16 for the dense input and output matrices. However,
a sensitivity study is done for lower and higher dimension
sizes of 2 to 128. The MergePath-SpMM utilizes the available
SIMD hardware using the thread mapping strategy described
in Section III-C.

For the sparse input matrix, a range of real-world graphs is
considered, as outlined in Table II along with their relevant
parameters. The Type I graphs are all power-law graphs listed
with their increasing number of non-zeros in the table. These
include all Type I and III graphs from GNNAdvisor [25],
as well as Nell from AWB-GCN [6]. Oregon-I, As-caida,
Wiki-Vote, email-Enron, email-Euall, soc-SlashDot811, and
coAuthorsDBLP are ported from the University of Florida
sparse matrix repository2. These power-law graphs show a
significant variation in the number of non-zeros per node.
This is observed in the maximum degree column of the table.
For example, Nell graph has 4549 non-zeros in an evil row,
whereas the average degree of this graph is 3.9.

Type II are all structured graphs ported from GNNAdvisor.
The variability between the average and maximum degrees
for these structured graphs is much lower than the counterpart
power-law graphs.

V. EVALUATION

Figure 4 shows the speedup of cuSPARSE, GNNAdvisor-
opt, and the proposed MergePath-SpMM over the GNNAdvi-
sor baseline using the default dimension size of 16. In this
setting, two neighbor groups in GNNAdvisor-opt are mapped
in a single warp to fully utilized the available SIMD hardware
resources. In the GNNAdvisor baseline, half of the SIMD
resources are not utilized since each warp only occupies half
the available SIMD lanes. Consequently, GNNAdvisor spawns
twice as many warps as GNNAdvisor-opt, but each warp is
unable to unlock the available SIMD parallelism. This leads
to GNNAdvisor-opt outperforming the GNNAdvisor baseline
by a geometric mean of 1.41× for all evaluated power-law
and structured sparse input matrices.

Similar to GNNAdvisor-opt, the proposed MergePath-
SpMM also maps two threads in a single warp to efficiently
exploit the SIMD capabilities. However, it aims to overcome

2https://www.cise.ufl.edu/research/sparse/matrices/groups.html

Type Graph Dataset # Nodes # Non-zeros Avg. Deg. Max. Deg.

I

Cora 2,708 10,556 3.9 168
Citeseer 3,327 9,228 2.8 99
Pubmed 19,717 99,203 5.1 171
Oregon-1 11,492 46,818 4.1 2389
As-caida 31,379 106,762 3.4 2628
Wiki-Vote 8,297 103,689 12.5 893
email-Enron 36,692 367,662 10 1383
email-Euall 265,214 420,045 1.6 930
Nell 65,755 251,550 3.8 4549
PPI 56,944 818,716 14.4 429
soc-SlashDot811 77,357 905,468 11.7 2508
artist 50,515 1,638,396 32.4 1469
com-Amazon 334,863 1,851,744 5.5 549
coAuthorsDBLP 299,067 1,955,352 6.5 336
soc-BlogCatalog 88,784 2,093,195 23.6 2538
amazon0601 410,236 4,878,874 11.9 2760
amazon0505 403,394 5,478,357 13.6 2760

II

PROTEINS full 43,466 162,088 3.7 25
Twitter-partial 580,768 1,435,116 2.5 12
DD 334,925 1,686,092 5 19
Yeast 1,710,902 3,636,546 2.1 6
OVCAR-8H 1,889,542 3,946,402 2.1 5
SW-620H 1,888,584 3,944,206 2.1 5

TABLE II: Sparse input graphs used for evaluation.

the critical shortcoming of performing all writes to the output
matrix using atomic operations in the GNNAdvisor-opt. In
MergePath-SpMM, the merge-path cost determines how the
work is distributed among threads. A high merge-path cost
implies less number of partial rows, which reduces the number
of atomic operations on output writes. However, higher cost
also implies that the algorithm must spawn a smaller number
of total threads to be mapped to warps in the GPU system. This
exposes a trade-off between parallelism and synchronizations
in MergePath-SpMM. The merge-path cost is a tunable param-
eter that is determined empirically in Figure 6. The evaluation
of sweeping merge-path cost between 2 to 50 shows that for
a dimension size of 16, the best-performing merge-path cost
is 20. Using this merge-path cost as a fixed parameter, the
MergePath-SpMM consistently outperforms GNNAdvisor by
a geometric mean of 1.85×, and GNNAdvisor-opt by 31%.

To gain deeper insights, Figure 4 shows the performance
results for individual sparse input matrices distributed across
Type-I (power-law) and Type-II (structured) graphs. For Type-
I graphs that follow a power law distribution, GNNAdvisor,
GNNAdvisor-opt, and MergePatth-SpMM all show superior
performance against cuSPARSE. These systems aim for a
load-balanced execution and explicitly tackle the evil rows
challenge, which leads to performance improvements over
cuSPARSE. The GNNAdvisor and GNNAdvisor-opt imple-
mentations break the evil rows into fine-grain neighbor group
partitions but require atomic updates on all writes to the output
matrix. The proposed MergePath-SpMM solves the indiscrim-
inate use of atomic updates by selectively determining the per-
thread schedule using the merge-path cost as an optimization
criterion. The results for Type-I graphs show that MergePath-
SpMM outperforms GNNAdvisor-opt in many of the power-
law graphs, while the performance advantage is at par for
some graphs, such as Wiki-Vote. This behavior stems from the
structure of the input graph. When the graph has a relatively
small number of input rows and a high average degree, the
distribution of non-zeros from different rows in each neigh-
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Fig. 5: Distribution of the type of write operations to the
output matrix in MergePath-SpMM at dimension size of 16.

bor group of GNNAdvisor is similar to MergePath-SpMM
using the merge-path cost of 20. Therefore, the number of
atomic operations is expected to be higher in both algorithms
for such input graphs. Consequently, the performance gap
between GNNAdvisor-opt and MergePath-SpMM diminishes.
To validate this observation, Figure 5 shows the distribution
of atomic and regular output updates for the MergePath-
SpMM algorithm. When the input graph has a relatively higher
number of atomic updates, the performance improvements of
MergePath-SpMM over GNNAdvisor-opt diminish. However,
when the number of atomic updates is low, the MergePath-
SpMM algorithm shows a significant performance advantage
over GNNAdvisor-opt. For example, email-EuAll and email-
Enron are similar in terms of the total number of non-zeros, but
email-Enron has a much smaller number of rows than email-
EuAll. For email-EuAll, the MergePath-SpMM breaks a large
number of rows into many complete rows to achieve a load-
balanced execution, resulting in fewer atomic updates than
email-Enron. The significant reduction in atomic operations
in email-EuAll shows an increased performance advantage for
MergePath-SpMM as compared to email-Enron.

The Type-II graphs are structured graphs where the num-
ber of non-zeros in each row of the sparse input matrix
is evenly distributed. Therefore, these graphs do not suffer
from the load-imbalance challenge and do not require fine-
grain distribution of non-zeros to exploit parallelism. The
cuSPARSE closed-source implementation consistently shows
superior performance over GNNAdvisor as it has optimized
SpMM kernels for these regular input matrices. cuSPARSE
is not limited to using row-wise parallelization strategies,
and based on the shapes of the input and output matrices,

0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

128 64 32 16 8 4 2

M
e

rg
e-

p
a

th
 C

o
st

N
o

rm
al

iz
e

d
 S

p
ee

d
u

p
 o

ve
r 

M
e

rg
e

-p
at

h
 C

o
st

 o
f 

2

Dimension Size

2 5 10 20
30 40 50 Cost

Fig. 6: Normalized performance and the best performing
merge-path cost at different dimension sizes.

it picks from a slew of available kernels ranging from row-
wise, column-wise, inner, and outer product combinations of
data flow. The GNNAdvisor-opt improves over GNNAdvisor
by increasing the GPU utilization, but it also unnecessarily
performs atomic operations for all output updates. This leads
to both GNNAdvisor baselines under-performing compared to
cuSPARSE for all Type-II structured graphs. The MergePath-
SpMM algorithm intelligently detects that breaking rows is
not necessary and performs most of its output updates using
complete rows. This is evidenced in Figure 5, where almost
all of the output updates in MergePath-SpMM are performed
using regular write operations for the Type-II graphs. Conse-
quently, MergePath-SpMM eschews unnecessary use of atomic
updates and performs comparable to cuSPARSE, as shown
in Figure 4. The exception is the Twitter-partial graph where
cuSPARSE shows a substantial performance advantage. We
evaluated a row-splitting implementation for Twitter-partial
(data not shown) that also under-performed by ∼2× compared
to cuSPARSE. Based on this comparison, we deduce that
cuSPARSE is able to utilize a different parallelization kernel
for the Twitter-partial input. We make a key observation
that the proposed MergePath-SpMM algorithm is a suitable
candidate in a diverse kernel selection framework, such as
cuSPARSE.

A. Merge-path Cost and Parallelism versus Synchronizations
The amount of parallelism and synchronizations vary at

different dimension sizes. In MergePath-SpMM, the tunable
merge-path cost parameter determines the tradeoff between
the spawned threads and the number of atomic output up-
dates. Therefore, the merge-path cost must be determined
independently for each dimension size. Figure 6 shows the
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normalized performance for MergePath-SpMM at different
dimension sizes. For each dimension size, the merge-path cost
is swept from 2 to 50, and the performance is normalized
to the merge-path cost of 2. Furthermore, the secondary y-
axis shows the best-performing merge-path cost at a given
dimension size. When the dimension size is high (128), the
MergePath-SpMM shows increasing performance at a higher
merge-path cost. In this setting, the resulting threads are
replicated across 4× warps to map the 128 dimensions across
the SIMD units with 32 lanes each. Therefore, at a higher
merge-path cost, the number of spawned threads is afforded
to be lower in favor of decreasing the number of non-zeros
in partial rows (that require atomic output updates). At 128
dimensions, the merge-path cost is selected as 50. However,
when dimensions decrease to 64, the amount of replication
of threads across warps also decreases. To compensate for
this lack of parallelism, the merge-path cost decreases to 35
for 64 dimensions. At 32 dimensions, each thread is mapped
to a warp since it is able to saturate the SIMD unit. Here,
the merge-path cost of 30 shows the right tradeoff between
parallelism and synchronization.

For the dimension size of 16, two threads are mapped in
each warp to efficiently utilize each SIMD unit’s hardware par-
allelism. In this setting, the merge-path cost of 20 is selected
since more parallelism is required to support the need for 2×
more threads. However, the parallelism is supported by trading
off with an increase in the number of atomic operations. At
the dimension sizes of 8 and 4, the merge-path cost drops to
15. In these settings, the MergePath-SpMM algorithm selects
sufficient parallelism but also keeps the number of atomic
operations in check. However, the performance is observed to
decrease rapidly for higher merge-path costs as the number of
dimensions decreases. At the dimension size of 2, each SIMD
unit is mapped with 16 threads to fully utilize the available
SIMD hardware parallelism. However, the thread divergence at
this extreme setting favors reducing the number of warps in the
GPU system. Consequently, the merge-path cost is increased
to 50 to optimize for synchronization.

B. Performance Scalability for different Dimension Sizes

To gain insights about the performance scaling potential
at different dimension sizes, Figure 7 shows the speedup
of MergePath-SpMM, GNNAdvisor, and GNNAdvisor-opt at
various dimension sizes normalized to GNNAdvisor at the

dimension size of 128. As the dimension size decreases,
the performance improves for all evaluated kernels. However,
the rate of performance improvement is observed to vary
dramatically for each kernel. It is observed to saturate for
GNNAdvisor at the dimension size of 32. This is due to the
inherent limitation of this baseline where the hardware paral-
lelism within the SIMD unit is not fully utilized for dimension
sizes below 32. In GNNAdvisor, the number of neighbor
groups is determined using the average degree, which does not
change for different dimension sizes. At 128 and 64 dimension
sizes, more work is performed in each warp relative to the
dimension size of 32. Therefore, the performance improves by
2× from the dimension size of 128 to 32. GNNAdvisor-opt
matches the performance scaling of GNNAdvisor until 32 di-
mensions. However, as the threads are mapped more efficiently
to utilize the SIMD hardware parallelism at lower dimension
sizes, GNNAdvisor-opt shows significant performance gains.
At a dimension size of 2, GNNAdvisor-opt achieves ∼9×
performance gains over GNNAdvisor at the dimension size
of 128.

The MergePath-SpMM shows a significant performance
gain of 27.62× over GNNAdvisor as the number of dimen-
sions is reduced from 128 to 2. However, the performance
gains relative to GNNAdvisor-opt vary at individual dimen-
sion sizes. At the dimension size of 128, MergePath-SpMM
spawns threads that are replicated across warps to achieve
plentiful parallelism. Since this is done at a high merge-path
cost of 50, the number of atomic operations is also kept
in check. On the other hand, both GNNAdvisor baselines
also have plentiful parallelism, where each warp executes a
large number of dimensions to increase the amount of work
per warp. Consequently, both GNNAdvisor baselines and the
MergePath-SpMM are able to appropriately trade-off between
parallelism and synchronizations. This trade off becomes more
favorable for MergePath-SpMM at 64 and 32 dimensions since
each warp in the GNNAdvisor baselines performs less work
and the total amount of parallelism is not adjusted relative to
the dimension size of 128. In contrast, the MergePath-SpMM
decreases the merge-path cost to compensate for the amount of
parallelism to adapt to the number of synchronizations. There-
fore, it is able to pull away with a significant performance gain
over GNNAdvisor baselines.

The performance advantage of MergePath-SpMM over
GNNAdvisor-opt is observed to decrease at the dimension size
of 16 as compared to the dimension size of 32. MergePath-
SpMM must use two threads to saturate the SIMD hardware
in each warp for the dimension size of 16. This comes at
the cost of reduced parallelism, which must trade-off with the
number of atomic updates by keeping the merge-path cost in
check. Therefore, the merge-path cost is decreased from 35 to
20. On the other hand, GNNAdvisor-opt spawns a consistently
large number of threads for both dimension sizes since it does
not care about the use of atomic operations. Therefore, it is
able to keep a high amount of parallelism and utilization of
the GPU resources. Consequently, the use of a lower merge-
path cost decreases the performance advantage for MergePath-
SpMM over GNNAdvisor-opt at the dimension size of 16. This
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Fig. 8: Scheduling overhead of MergePath-SpMM during
online execution in a 2-layer graph neural network setting.

trend continues for dimension sizes 8 and 4, where MergePath-
SpMM lowers the merge-path cost to 15 in order to achieve
the right balance between parallelism and synchronizations. At
the extreme dimension size of 2, the MergePath-SpMM favors
reducing synchronizations over parallelism by selecting the
merge-path cost of 50. On the other hand, the GNNAdvisor-opt
spawns a consistently large number of warps for this setting.
The GPU at this dimension size must process 16 diverging
threads per warp and does not perform favorably at a very high
number of warps. The MergePath-SpMM is able to adapt to
this GPU’s architectural dependence and lower the number of
warps significantly to achieve superior performance over the
GNNAdvisor-opt baseline.

C. Online versus Offline Execution
The execution of MergePath-SpMM is evaluated in both

online and offline settings. In an offline setting, the algorithm’s
schedule is processed once for a given input graph and
reused as long as the sparse input matrix is not swapped
out of the system. On the other hand, the online setting
executes the algorithm on each invocation of the graph neural
network inference. For example, the GNNAdvisor framework
invokes the SpMM kernel twice for a 2-layer GCN model.
Figure 8 shows the online scenario where the MergePath-
SpMM schedule is computed and stored in global memory
before two kernel invocations. The geometric mean scheduling
overhead across all input graphs is measured as ∼2%. This
overhead is generally constant time across different graphs, but
its contribution towards the overall execution time increases
for small graphs. For example, the scheduling overhead in the
smallest Cora graph is highest at 10%, while for large graphs
such as com-Amazon, it is under 1%.

D. Performance Scalability in Large Core Count Multicore
The RISC-V ecosystem is accelerating the trend towards

large core count multicore CPUs. Several processor design
companies (MIPS and Esperanto to name a few) have an-
nounced single-chip processors with up to 1000 cores on a die.
In this massively parallel setup, up to a thousand private caches
are kept coherent to enable a scalable distributed cache coher-
ence paradigm. We evaluate the performance scaling potential
of the proposed MergePath-SpMM kernel in a 1000-core
multicore setting. Figure 9 shows the normalized completion
times for the GNNAdvisor and MergePath-SpMM kernels on
a simulated multicore processor. The number of cores is varied
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Fig. 9: MergePath-SpMM and GNNAdvisor completion
times at increasing core counts normalized to 64 cores.

from 64 to 1024, where a one-to-one thread mapping is used
for evaluation. At lower core counts, the total cache capacity
is kept consistent by scaling up the size of the per-core cache
hierarchy. Moreover, the memory controllers are decreased
for smaller core counts, but the total DRAM bandwidth is
kept constant. The completion times of the GNNAdvisor and
MergePath-SpMM kernels are normalized to their respective
64-core implementation. Due to simulator speed constraints,
a set of representative inputs are evaluated using the default
dimension size of 16. Cora, Pubmed, Nell, and com-Amazon
are picked from the power-law Type-I category to evaluate
graphs of different sizes. Moreover, Twitter-partial from the
Type-II category is picked to evaluate a structured graph.

GNNAdvisor struggles to demonstrate performance scaling
at high core counts for input graphs where evil rows have many
non-zero elements compared to the rest of the rows (Cora and
Nell). This imbalance results in multiple cores processing the
evil row, which leads to costly atomic operations due to an
increased number of sharing misses to serialize their execution.
This increases the memory stalls that degrade the overall
performance. For the remaining graphs where the evil rows do
not present a significant challenge, GNNAdvisor demonstrates
performance scaling at increasing core counts.

The MergePath-SpMM kernel does not indiscriminately
use atomic operations for all output matrix updates. As the
number of threads in this setting is fixed to match the core
count, the merge-path cost scales up depending on the size
of the input graph and the number of cores. A high merge-
path cost decreases the number of non-zero elements that
are processed using partial rows, which significantly reduces
the number of atomic operations. For the evaluated input
graphs, only Cora has a small merge-path cost of under 25
at 1024 cores. Therefore, it shows no performance scaling
from 512 to 1024 cores. On the other hand, all remaining
evaluated graphs use a merge-path cost of greater than 100,
and exhibit performance scaling up to 1024 cores. Due to
improved performance scaling, MergePath-SpMM improves
execution time over GNNAdvisor by 2× at 1024 cores (data
not shown). It is observed that the compute portion of the
completion times scale at a high rate with an increase in
the core counts. However, the memory stall component shows
limited scaling as core counts are increased. In the future, we
plan to incorporate efficient data locality and latency-hiding



techniques to improve the performance of MergePath-SpMM
algorithm for 1000-core processors.

VI. CONCLUSION

Graph neural networks have shown tremendous potential
to unlock predictive analytics on real-world graphs. However,
machine learning on graphs involves feature vectors per node
that lead to a massive amount of computations and memory
accesses in the matrix multiplication kernels. The highly sparse
and irregular nature of graphs leads to a sparse matrix-matrix
(SpMM) computational paradigm but introduces significant
challenges with workload imbalance in a parallel processor
setting. This paper makes a key observation that prior work
does not take into account the tradeoffs between exploiting
parallelism and eschewing unnecessary synchronizations for
output matrix updates. A novel merge-based SpMM parallel
algorithm is proposed that achieves load-balanced execution
on massively parallel processors while co-optimizing paral-
lelism and synchronizations among threads. The evaluation
shows robust performance scaling for the proposed MergePath-
SpMM algorithm in both GPU and 1000-core multicore pro-
cessor systems.
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Eduard Alarcón. Computing graph neural networks: A survey from
algorithms to accelerators. ACM Comput. Surv., 54(9), oct 2021.

[2] Adam Auten, Matthew Tomei, and Rakesh Kumar. Hardware accel-
eration of graph neural networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2020.

[3] Halit Dogan, Masab Ahmad, Brian Kahne, and Omer Khan. Accelerating
synchronization using moving compute to data model at 1,000-core
multicore scale. ACM Trans. Archit. Code Optim., 16(1), feb 2019.

[4] Luke Durant, Olivier Giroux, Mark Harris, and Nick Stam.
Inside volta: The world’s most advanced data center gpu.
https://developer.nvidia.com/blog/inside-volta.

[5] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[6] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt, and M. C. Herbordt. Awb-gcn: A graph convolu-
tional network accelerator with runtime workload rebalancing. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 922–936, Los Alamitos, CA, USA, oct 2020. IEEE
Computer Society.

[7] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-gcn: A graph
convolutional network accelerator with runtime locality enhancement
through islandization. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’21, page 1051–1063,
New York, NY, USA, 2021. Association for Computing Machinery.

[8] Fred G. Gustavson. Two fast algorithms for sparse matrices: Mul-
tiplication and permuted transposition. ACM Trans. Math. Softw.,
4(3):250–269, sep 1978.

[9] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page
1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc.

[10] R. Hwang, M. Kang, J. Lee, D. Kam, Y. Lee, and M. Rhu. GROW: A
Row-Stationary Sparse-Dense GEMM Accelerator for Memory-Efficient
Graph Convolutional Neural Networks. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
42–55, Los Alamitos, CA, USA, mar 2023. IEEE Computer Society.

[11] Brian Kahne. FreescaleADL: An Industrial-Strength
Architectural Description Language For Programmable Cores.
https://source.codeaurora.org/external/adl-tools/adl/tree, 2013.

[12] Kevin Kiningham, Philip Levis, and Christopher Ré. GRIP: A Graph
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