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Abstract—The recent success of deep neural networks on
challenging problems have provoked both academia and in-
dustry to design efficient specialized hardware to improve
the performance and energy requirements for training and
evaluating state-of-the-art neural networks. In this context,
many specialized accelerator designs have been proposed. For
this work, instead of designing a specialized piece of hardware,
we propose a general purpose multi-core architecture called
QUARQ that provides state-of-the-art performance for neural
network workloads. QUARQ is a tiled multi-core architecture
which contains both shared memory and explicit messaging
capabilities for inter-core communication. QUARQ enables
scalable computation, memory and communication for neural
networks. For computation, QUARQ enables a short-SIMD (64-
bit) pipeline per core. Each short-SIMD can perform four 16-
bit precision MAC operations. QUARQ enables an intelligent
2-level cache hierarchy that exploits data reuse at the L1
levels, and caches per-frame dataset on-chip in the L2 cache,
avoiding expensive off-chip memory accesses leading to near
optimal memory bandwidth usage. QUARQ enables extremely
scalable communication by combining the hardware based
cache coherence protocol with in-hardware explicit messaging.
This allows fine-grain concurrency to be exploited within a
single neuron since communication overheads are much smaller
than the benefits achieved from data reuse enabled by fine-
grain concurrency. The simulation based evaluations results
show that 512 cores with a short-SIMD pipeline per core
provides 165 frames per second performance for ALEXNET,
which is a classical neural network workload.

I. INTRODUCTION

The recent success of deep neural networks (DNNs) on
computer vision [1] [2] [3] and natural language process-
ing [4] have attracted the attention of both academia and
industry. In this context, many accelerators are proposed for
both high performance [5] and low energy applications [6] [7].
Specially, GPUs are shown to be effective in processing of
DNNs due to their high FLOP rate, memory bandwidth, and
large concurrency capabilities.

In this work, we propose to use a general purpose hybrid
multicore architecture described in [8] for inference phase of
deep neural networks instead of specialized hardware. The
overview of a tile of the system can be seen in Figure 1.
The proposed system is a tiled multicore that combines
the shared memory with in–hardware explicit messaging. It
utilizes RISCV ISA with extensions for explicit messaging
instructions. We also extended the core described in [8] with
4–way short–SIMD to increase FLOP rate of the system.
In addition, since it is shown in the literature that 16–bit
floating point is enough for neural networks [9], support
for 16–bit floating point is added to reduce the pressure on
caches. Each SIMD instruction performs four 16–bit floating
point operations. To accelerate communication, four basic
explicit messaging instructions are added to the ISA and
implemented at the hardware level.

1) Non-blocking send instruction (send) requires a destina-
tion address along with the data to be sent. Both destination
address and data are setup in the register file explicitly
using load/store instructions that precede the send instruction.
A message is composed by reading the register file, and
inserting it into a send queue for transmission on the on-chip

Multicore

L1-D L1-I

S

T

B

L2                     Directory

Mem. Controller

Compute 

Pipeline
S

Q

R

Q

RouterRouter

Figure 1: Overview of a tile in the proposed system with explicit
messaging support.

network. 2) Blocking receive instruction (recv) is used to
receive the sent data. When a new message is received, it
is buffered in a receive queue until handled via a receive
instruction. A core’s pipeline is stalled if it gets to a recv
instruction but hasn’t received the message yet. The receive
instruction loads the message contents into already setup
registers, and an ACK message is generated and sent back to
the original sender core to enforce flow-control. 3) Blocking
send with rendezvous instruction (sendr) is similar to a
send instruction with the exception that it always blocks the
compute pipeline until an explicit reply is received from
the destination thread. 4) Non-blocking resume rendezvous
instruction (resumer) is used to respond to a sendr instruction
from a sender. More details about the explicit messaging
support on top of shared memory architecture can be found
in [8].

As a representative neural network application, a classical
DNN AlexNet [3] is employed to show the applicability of the
proposed architecture on neural networks. Two parallelization
strategies are presented. The first one is a naive coarse–
grained parallelization in which neurons are divided among
available threads and synchronized with a barrier after
each layer. The barriers are implemented using explicit
messaging instructions sendr/resumer as explained in [8].
The second one is a fine–grained parallelization strategy in
which threads are clustered into groups and the neurons are
divided among the groups, so that each thread group works
on the same set of neurons. This approach deploys explicit
messaging instructions to enable fine–grained concurrency.
Since multiple threads work on the same set of neurons, the
threads in the group generates partial sums and the partial
sums are accumulated using explicit messaging instruction.
Similarly, the threads are synchronized with a barrier after
each layer work is done. We also implemented a version
of fine–grained parallelization by using SIMD instructions
of QUARQ to improve the FLOP rate of the system. The
results shows that the proposed system provides 92 frames
per second for AlexNet with a single image when using fine–
grained parallelization strategy with SIMD support. This
outperforms the GPU with equivalent FLOP rate (NVDIA
Tegra X1) which offers 67 frames per second [9]. In addition,
a core count scaling and memory bandwidth sensitivity
studies are conducted to show the bottlenecks of the system
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Figure 2: Overview of convolutional layer.
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Figure 3: Overview of convolutional layer.

at different architectural configurations for the AlexNet
benchamrk.

II. MACHINE LEARNING

We have evaluated AlexNet as representative machine
learning workload. AlexNet consists of five convolutional
layers and three fully–connected layers. In addition, some of
the convolutional layers contain pooling and normalization
layers. Since most of the computation is in convolutional
layers, here we only discuss the parallelization of the convo-
lutional layer in detail. Briefly, other layers are parallelized
by dividing the neurons among available threads.

The general overview of a convolutional layer can be
seen in Figure 3. There are multiple kernels to produce
multiple output feature maps. Each kernel has multiple
channels corresponding to input channels. Each neuron
output is calculated with the accumulation of 2D convolution
operations using the channels of the corresponding kernel
and input. All three data structures are reused for various
purposes. Each kernel is reused for each neuron in an output
feature map, and the input is also reused with each kernel to
generate different output feature maps. Similarly, each output
is also reused when accumulating the 2D convolutions. To
minimize the performance overheads, reuse of these data in
L1 cache should be maximized.

A naive coarse–grained parallelization strategy is that all
the neurons are tiled and tiles are divided among available
threads. Each thread performs all the computation for the
neurons in its tiles. This approach enables reuse of the kernel
data. Each kernel channel is brought to L1 data cache one
by one, and reused for all the neurons in each tile. This
approach also allows data reuse for the output data structure
if the neurons in the tile, 2D kernel and the corresponding
input fits in L1. That is to say, when bringing the next kernel
channel for the same tile, the outputs are still in the L1 and

Algorithm 1 Fine–grained parallelization of convolution

1: << Worker Threads >>
2: Divide the channels among group of threads
3: start = tid * nChannels/nThreads
4: stop = (tid+1) * nChannels/nThreads
5: for each ch in range(start, stop) do
6: for each y in range(0,outH) do
7: for each x in range(0,outW) do
8: Perform convolution for one channel
9: psum = convolution(filter, input, ch, y, x)

10: Send psum to accumulation core
11: sendmsg(AccumCore, psum,y,x)
12: << Accumulation Threads:>>
13: num_msg = 0;
14: while num_msg < nChannels do
15: recvmsg(&addr, &psum, &y, &x)
16: output[y][x] += psum
17: end while

loaded without expensive L1 miss. However, this approach
creates imbalance when using larger tile size in some of
the layers. For example, layer 3 of AlexNet contains 384
13× 13 neurons. If we use 13× 13 tiles to have good reuse
of filter and output data in L1, when using 256–core system,
some of the cores get more work than others. This causes
underutilization of the system. If we reduce the tile size to
have more concurrency, then it hurts the data reuse.

More optimized implementation makes use of fine–grained
parallelization strategy. This is achieved by dispatching mul-
tiple threads to work on one neuron. This requires updating
the same neuron output by multiple threads. Therefore, this
must be implemented using critical code sections. The critical
section work can be realized utilizing shared memory spin
locks. However, it does not scale well due to the large
overheads of shared memory locks. Therefore, we have
implemented it using the explicit messaging capabilities of
the QUARQ architecture, as depicted in Algorithm 1. In
this approach, as it is seen in the algorithm, the cores are
clustered into small thread groups and each group works on
a tile of neurons. To calculate a neuron output, the kernel
channels are divided among the threads in the group, and
each thread calculates partial sums using its kernel channels.
One of the threads in each group is used to accumulate the
partial sums. The partial sum of each neuron for each kernel
channel is calculated (line 9), and sent to the accumulation
thread using send instruction to be accumulated (line 11).
The accumulation thread (lines 14–17) receives the partial
sums from the other threads, and accumulates it on the
output to be used in the following layers. In this approach,
the neuron outputs reside in separate cores that perform the
accumulation work, and they are reused in L1. Similarly, the
kernel channels are also reused for all the neurons in the tile.
Because this approach deploys a fine–grain parallelization
strategy, it enables higher concurrency without loosing the
data reuse benefits. To get the best performance out of this
approach, one needs to adjust the number of threads per
group. For this work, we empirically decided the optimal
number of threads per group as 8.

Both approaches discussed here are implemented as scalar.
In addition to two scalar implementations, the fine–grained
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parallelization approach is also realized using the SIMD
capabilities of the system. This approach implements the
previously mentioned 2D convolutions by using 4-way SIMD
instructions and significantly reduces the instruction footprint.
Since SIMD version also utilizes 16 bit floating point, it also
reduces the pressure on the memory subsystem. Similar to
convolutional layers, other layers are also implemented by
utilizing SIMD capabilities.

III. EVALUATION METHODOLOGY

A. Compiler Support
GCC 7.0.1 for RISV is used as the compiler. The compiler

itself does not inherently understands explicit messaging.
Instead, it simply wraps the explicit messaging instructions
within assembly blocks, using the gcc extended asm block
syntax to instruct the compiler as to what registers are inputs
or outputs. This allows the compiler to allocate registers
properly and schedule the code.

Architectural Parameter Value
Number of Cores 256 @ 1 GHz
Compute Pipeline per Core In–Order, Single–Issue
Word Size 64 bits
Physical Address Length 48 bits

Memory Subsystem
L1–I Cache per core 8 KB, 4–way Assoc., 1 cycle
L1–D Cache per core 8 KB, 4–way Assoc., 1 cycle
L2 Inclusive Cache per core 16 KB, 8–way Assoc.

2 cycle tag, 4 cycle data
Cache Line Size 64 bytes
Directory Protocol Invalidation–based MESI

ACKwise4
Num. of Memory Controllers 8
DRAM Bandwidth/Latency 10 GBps per Controller/ 100ns
DRAM Latency 100 ns

Electrical 2–D Mesh with XY Routing
Hop Latency 2 cycles (1–router, 1–link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits

Explicit Communication
Send queue per core 4 entry (1 entry = 4 words)
Receive queue per core 48 entries

Table I: Architectural parameters for evaluation.
B. Simulator Setup

The proposed architecture is implemented using an in–
house industry–class simulator and the associated GCC
compiler. A futuristic many–core tiled multicore processor,
a two–level private L1, shared L2 cache hierarchy per core
is evaluated. The default architectural parameters used for
evaluation are shown in Table I.

C. Performance Models
All experiments are performed using the core, cache

hierarchy, coherence protocol, memory system, and on–chip
interconnection network models implemented within the
multicore simulator. The electrical mesh interconnection
network uses XY routing. We model a 2–cycle per hop
delay; we also account for the appropriate pipeline latencies
associated with loading and unloading a packet onto the
network [10]. In addition to the fixed per–hop latency,

0
5
10
15
20
25
30
35
40

Scalar	
Coarse

Scalar	
Fine

SIMD	
Fine

Co
m
pl
et
io
n	
Ti
m
e	
(C
yc
le
s)

M
ill
io
ns

Communication	
Stalls

Memory	Stalls

Compute	Stalls

29	FPS
38 FPS

93	FPS

Figure 4: Completion time results for coarse–grained, fine–grained
and fine–grained SIMD implementations of AlexNet at 256–core
system.

network contention delays are also modeled. These models
are derived from Graphite multicore simulator [11]. The
performance models are extended to accurately account for
explicit communication instructions.

D. Evaluation Metrics
The workload is run to completion, and the completion

time of parallel region is measured. The parallel completion
time is broken down into the following categories:

Compute Stalls is the time spent retiring instructions,
waiting for functional unit (ALU, FPU, Multiplier, etc.),
and the stall time due to mis-predicted branch instructions.

Memory Stalls is the stall time due to load/store queue
capacity limits, fences, and waiting for load completion and
L1 instruction cache misses.

Communication Stalls is the stall time due to explicit
messaging instructions. The communication latency includes
stalls caused by send (due to flow control restrictions), recv
(waiting for a message to arrive), and sendr (round–trip la-
tency to the destination, wait time in the destination’s receive
queue, and destination’s execution latency) instructions.

IV. EVALUATION

Figure 4 shows the completion time breakdowns and the
respective frames per second for three AlexNet implemen-
tations. As seen from the figure that memory stalls are the
main bottleneck for the coarse–grained implementation due
to limited data reuse at level 1 cache. This is improved
with fine–grained implementation by enhancing the data
reuse for input, kernel and output data. Even though fine–
grained implementation helps to improve performance, it
still has noticeable memory and compute stalls. To improve
the compute stalls, the fine–grained version is implemented
using SIMD capabilities of QUARQ. Similarly, the memory
stalls are improved by using 16 bit floating point instead
of 32 bit. As the figure illustrates, while the compute stalls
go down by 3×, the memory stalls decrease by 2×, and
SIMD implementation of a 256–core QUARQ architecture
provides 93 frames per second. The achieved performance
under QUARQ is better than NVDIA’s Tegra X1, which
offers 67 frames per second with 256 CUDA cores [9]. At the
respective architecture configurations, both NVidia’s Tegra X1
and the proposed 256–core QUARQ are rated at 1 teraflops.
Ideally 4-way SIMD should decrease the instruction count by
4×, however due to some scalar region in the implementation,
we observe the observed deviation from the ideal case.

To observe the performance scaling trends of AlexNet and
the bottlenecks at different core counts, a scaling experiment
is conducted for the SIMD fine–grained implementation.
Figure 6 shows that AlexNet scales to 512 cores and provides
165 fps, which is 1.8× better over 256 cores. We also
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Figure 5: Completion time breakdowns for SIMD implementation
at 512 and 2048 cores, and 2048 cores with hierarchical barriers.

observe that the performance does not improve at 2048 cores
compared to 512 cores. As seen in Figure 5, the memory and
compute stalls at 2048 cores are improved compared to 512
cores, however the blowup in communication stalls prevents
further increase in performance scaling of AlexNet. The
figure also shows the breakdown of the communication stalls
for the 2048–cores system. Sendr stalls constitute almost 90%
of the communication stalls, which is used to implement
barrier synchronization. Therefore, to be able to scale to 2048
cores, thread synchronization should be improved. One of
the ways of improving barrier synchronization is to deploy
hierarchical barriers. As seen in the figure, replacing the
barriers with hierarchical ones at 2048–cores system (2048-
hb) reduces the sendr stalls (barrier overhead) by 40% and
provides 206 fps. However, the communication stalls still
remain as the biggest bottleneck for 2048–cores system. As
a future work, we plan to explore multiple pipelines in a
tile to reduce barrier overheads. Using four pipelines in each
core at 512–cores system provides the same compute power
as 2048–cores system but keeps the network same which is
expected to have similar barrier overhead as 512 cores with
single pipeline per core.

As a last experiment, we have also conducted a memory
bandwidth sensitivity study to show the impact of the
bandwidth on the performance. Since AlexNet has 3 fully–
connected layers, it has large amount of data for weights to be
read from the main memory. In this experiment, the number
of memory controllers and bandwidth per memory controller
is varied for 256, 512 and 2048–cores system as shown
in Figure 7. The figure shows that for 256–cores system,
the performance is not impacted at all by both the number
of memory controllers and the bandwidth per controller.
However, as the number of cores increases, more concurrent
requests from the main memory happens, hence either number
of memory controllers needs to be increased or the bandwidth
per controller should go up. For 512 cores, the performance
does not get better beyond the total bandwidth of 160 Gb
per second. On the other hand, as seen from the figure, at
2048 cores, increasing the number of memory controllers
helps more than improved bandwidth per controller. With
hierarchical barriers and enhanced memory bandwidth, 2048
cores provide 271 frames per second.

V. CONCLUSION

This paper presents a general–purpose hybrid multicore
architecture for deep neural network applications. Our
analysis on a classical neural network AlexNet shows that
the proposed architecture with a short–SIMD and 16–bit
floating point support provides a state-of-the-art performance
by enabling low overhead fine–grained communication of
threads via in–hardware explicit messaging. The proposed
system scales to 512 cores and offers 165 fps for AlexNet.
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