
A Case for a Situationally Adaptive Many-core Execution Model for
Cognitive Computing Workloads

Masab Ahmad∗, Chris J. Michael†, Omer Khan∗
∗University of Connecticut, Storrs, CT

†Naval Research Laboratory, Stennis Space Center, MS

Abstract—Cognitive computing has emerged as a challenge
application domain that requires sensor-to-decision algorithms.
However, situational dynamic changes in such algorithms give
rise to efficiency challenges in computational settings. These
algorithmic variations stem from input dependence, such as the
context of data or the sparsity of the graph being processed.
Consequently, concurrency control becomes challenging since the
complex data-dependent behavior in these workloads exhibits a
range of plausible parallel implementations. Moreover, today’s
computational hardware increasingly exposes concurrency con-
trols to the software, and the right choice for the execution model
varies with the algorithm and its input characteristics. In this
paper we address the question of how to efficiently harness
concurrency controls in the cognitive computing context. We
present a situationally adaptive scheduler (SAS) that manages
input dependence to yield a near-optimal parallelization strategy
at the software layer, and the right concurrency control at the
architecture layer. We evaluate SAS on a large-scale simulated
multicore and show that situational scheduling helps achieve
better scalability over naive settings.

I. INTRODUCTION

The society in general is experiencing new trends towards
cost efficiency and reliance on machines for everyday tasks.
Our daily lives are increasingly becoming dependent on com-
putational platforms with advanced cognitive skills. Such cog-
nitive platforms require augmented sensor-to-decision process-
ing [6], whereby they continuously sense their environment
and compute their decisions using a computational substrate
that may reside onboard or offline (e.g., a datacenter). We
consider a simplistic view of the cognitive computing “inner
loop” that must sense, control and act on sensed input. Figure 1
shows the application domains for the respective tasks i.e.,
sensor data processing and perception, task coordination and
scheduling, and path planning. The algorithms/heuristics that
represent these applications fall in the category of data and
graph analytic problems. They operate on unstructured data
and exhibit complex dependence patterns that are known only
during program execution [8]. Therefore, advancements in
data and graph analytics give rise to stringent concurrency
requirements.

On the computational front, the industry has aggressively
adopted multicore technology that itself exposes concurrency
controls to the software. Even though increases in processor
efficiency and memory density help scalability, computational
resources in current systems still tend to be severely over-
or under-utilized, leading to non-optimal efficiency. Dynamic
input changes [22] [12] lead to performance consequences
as well that create issues in scalability and throughput. We
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Fig. 1. A simplistic view of the cognitive computing “loop”. The
complexity of the loop is exacerbated by the spatial and stochastic
variables as well as temporal integration of inputs.

can take an example of an autonomous vehicle (AV) tasked
with finding a single source shortest path (SSSP) in a dynamic
environment. Sensor data is input to weather models, which
produce graphs that are mapped onto an architecture to be
processed to make decisions for shortest path calculations.
Situational changes in weather, location, and other events
cause changes in input graph characteristics. This leads to
challenges in architectural requirements to maintain efficiency
and real-time guarantees for the AV, primarily because dif-
ferent algorithms provide different scalability for different
input types. This results in the so called “Ninja Performance
Gap” [25], which is the humongous performance gap between
programs naively mapped onto architectures and programs
optimized for efficiency.

So why do these “Ninja Performance Gaps” occur? The
primary reason is that situational changes in inputs lead to
challenges from software through architecture. As depicted
earlier, data and graph analytic algorithms are inherently
irregular and exhibit complex data-dependence [8]. Inputs
come in various types with changes occurring primarily due
to situational dynamic alterations, and different algorithmic
parallelizations scale depending on these inputs provided to
the program. These situational changes in software also prop-
agate to the underlying computational hardware. As processors
get more heterogeneous and parallel (e.g., Intel Xeon Phi,
Graphic Processing Units (GPUs), and the brain-inspired IBM
TrueNorth chip), variations caused by situational settings ex-
pose more performance gaps within underlying architectures.
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Fig. 2. Situational Choices and Situational Scheduling.

Such variations may also lead to choices that perform best
when executed sequentially, hence creating a range of single-
through multi-threaded mappings. This leads to challenges
in architectural mapping, such as providing optimal thread
scalability and resource utilization. In these situational con-
texts, end-users and programmers do not fully consider these
implications of their programs and end up implementing sub-
optimal concurrency strategies at both software parallelization
and hardware level concurrency controls.

Finding an optimal combination in such situational set-
tings involves correlating large sub-spaces of software and
architectural configurations from which one combination must
be chosen. A situational computing model is thus needed
that understands correlations, harnesses all available choices,
and optimally configures sensor-to-decision processes of the
cognitive “inner loops” efficiently onto software and hardware.

We formulate the proposed situational scheduler (SAS) as
an artificial intelligence (AI) problem, where a learner trains
based on some offline data/information, then solves a choice
search space, as shown in Fig. 2. One positive aspect of
using an AI learner is that it can improve over time and
deliver results with high accuracy. However, the learner needs
to articulate all situational choices, which is a hard problem
due to the large space of combinations. The problem becomes
even harder as more choices are added to the computational
paradigm, which increases software complexity due to choices
between various available libraries and for various machine
types. We demonstrate a prototype implementation of SAS
for graph analytic algorithms executing on a large scale
simulated multicore. We analyze situational paradigms, such as
input dependence and concurrency control, and show efficient
parallel execution and scalability.

II. RELATED WORK

Prior works have made many attempts to solve this adaptive
problem generically for various architectures and algorithms.
Autotuning works such as OpenTuner [4] and PetaBricks [3]
statically search spaces of program optimizations to find a
software combination that performs best on an underlying
architecture. Such works do not assume any prior knowledge
of which combinations are preferable (which makes our work
orthogonal to autotuners), and thus are constrained by their
learning time (several tens of hours) due to program search
spaces (with complex combinations of up to 103657 combi-
nations for workloads such as Poisson) [10]. Synthetic inputs
can be used as plausible training data to reduce complexity
in such cases [16] while maintaining ample evaluation ac-
curacy [17]. Other works, such as automatic parallelization

compilers [24] [7] statically assemble programs for concur-
rency, while other frameworks, such as HeartBeat [13] and
SEEC [14], optimize for performance dynamically. However
they do not take into account situationally dynamic input
changes together with choosing which algorithm or paralleliza-
tion might work best on an algorithm or architecture. Either
way, a holistic approach to cater for cognitive computing
paradigm still remains an unsolved problem.

III. SAS PROTOTYPE

This section motivates the need for a situational scheduler
in cognitive settings. We show how input dependence causes
variations in concurrency requirements and how these require-
ments affect performance. Then the proposed scheduler (SAS)
framework is formulated. Finally, the evaluation shows how
the scheduler performs in a simulated multicore setup.

A. Situational Choices

One of the most ubiquitous graph problem falls in the
domain of finding a single source shortest path (SSSP).
Cognitive platforms, such as UAVs and self-driving cars use
SSSP as a core algorithm for path planning. We therefore
take SSSP as a challenge problem to explain what choices
are available that need to be exploited to ensure performance
optimality. The SSSP choices are executed on a simulated
256-core multicore using the Graphite simulator [11]. We
use the Graphite simulator because many-core chips with
hundreds of cores do not exist yet. Each core is modeled as
an in-order pipeline with 32KB private L1 instruction and
cache caches, and a 256KB shared L2 cache. The 256-core
processor also models eight memory controllers to access the
off-chip memory. All input graphs for SSSP problem have an
adjacency list representation.

Algorithm 1 A Generic Graph Algorithm Skeleton
1: for (Each vertex u) do . Outer Vertex Loop
2: for (Each Edge of u) do . Inner Edge Loop
3: Do Parallel Work (Locks may be required)
4: Do more Parallel Work (Sync threads if required)

1) Input Dependence: Input graphs come in many different
types, sizes, and compositions, depending on situational set-
tings. All graph algorithms have outer loop that traverses the
graph’s vertices, and inner loop that traverses the neighboring
edges of a given vertex, as shown in the generic graph skeleton
in Algorithm 1 [15] [8]. Input dependence influences graph
sparsity and density, which determines how many inner loop
iterations are required per outer loop. Graphs with less inner
loop traversals have more sparsity, and vice versa. Due to
continuously evolving inputs (cf. Figure 2), the situationally
changing graphs lead to choices in parallelization strategies
that exploit either edge-level parallelism in the inner loop, or
vertex level parallelism in the outer loop. This algorithmic
template is generic to almost all graph algorithms, and thus
these two parallelization strategies with respect to the graph’s
sparsity apply to a larger domain of graph analytics [25].
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Fig. 3. Parallelization strategies for SSSP. Dense graph has 16K vertices, 8K edges per
vertex and Sparse graph has 16K vertices, 16 edges per vertex
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Fig. 4. Concurrency Control Issues for SSSP in Multicores. Sparse graph used.

Sparse graphs perform best with outer loop parallelizations,
while dense graphs work well with inner loop parallelization
strategies.

2) Parallelization Strategy at the Software Layer: In case of
the SSSP algorithm, Figure 3 shows results for different paral-
lelization strategies, where speedup or slowdown is computed
by comparing completion time at various concurrency setups
over the sequential SSSP. We observe that the edge-level (inner
loop) parallelization performs best for a dense graph that has
higher connectivity between neighboring vertices, while the
vertex-level (outer loop) parallelization strategy works best
for a sparse graph that has less connectivity. It is noteworthy
that selection of inner loop parallelization strategy for sparse
graph results in a slowdown when compared to the sequential
execution. This makes it even more important to choose the
right parallelization strategy situationally. In general, input
dependence and parallelization strategies are correlated in a
sense that parallelization strategies are a software consequence
of input dependence. To fully harness efficiency in such
situational settings, these choices must be availed properly.

3) Concurrency Control at the Architecture Layer: Figure 4
shows how two different sparse graph sizes observe differ-
ent scalability patterns, while already exploiting the efficient
vertex-level parallelism. This results as an architectural con-
sequence due to input dependence, where choices are now
exposed within the underlying hardware as optimal thread
count. A large graph scales to higher thread count, while
a smaller graph scales less. This happens because a larger
graph encompasses more work that can be distributed amongst
threads, while small graphs encompass less work, and hence
less parallelism is available. Shortcomings, such as inter-
algorithmic dependencies and synchronization bottlenecks also

reduce scalability at high thread count. These issues allow
some algorithms to scale only to intermediate thread counts,
while some scale to larger thread counts, depending on the
available parallelism. Due to lack of knowledge of scalability
patterns, a naive parallelization would try to use the maximum
number of threads available in the multicore processor, and
hence not perform optimally. A scheduler is thus required
that predicts scalability and then controls concurrency in such
situational settings.

B. SAS: Situationally Adaptive Scheduler

Using the choices described earlier, we formulate the pro-
posed situational scheduler that caters for software and hard-
ware using input situations. Various inputs and architectural
combinations combine into an extremely large number of pos-
sible configurations. Given such a high complexity problem,
it is imperative to reduce the overall software and hardware
search space. Heuristics that are primarily associated with
machine learning are useful in such a setting.

Machine learning algorithms, such as neural networks or
support vector machines, can deliver optimal search results
with low complexity. At a higher abstraction, supervised
machine learning is widely acknowledged as a scalable and
efficient solution to problems with large sub-spaces [18].
The downside of using such algorithms is that they require
some offline training data to be tuned and optimized to find
optimal results. However in the case of our scheduler, offline
data can be readily and easily available. Parameters such as
available core counts on the target machine, parallelization
libraries, and some information on scalability can further help
supplement the learning process.

1) SAS Framework Flow: Initially, training data that is
generated offline is input to the machine learning scheduler,
so it can learn about the available algorithms and machine
parameters. This training data contains performance numbers
such as speedups obtained, and/or other required parameters
obtained from a slew of synthetic inputs. Some a priori
information on which configurations perform better on specific
machine setups is also assumed to be within this training
phase. Such supervision reduces learning complexity, and is
expected to normalize configuration to perform optimally.

Once the scheduler is fully tuned, the user feeds the
SAS scheduler with the desired algorithm and its input
characteristics. Such inputs can be real inputs such as road
networks, or changing weather graphs which are obtained
over time. The scheduler then analyzes the given input and
run it through its machine learning algorithm. Once the
user defines inputs, the learner then starts the evaluation
phase, where output configurations are generated, and output
accuracy is determined. Using machine learning, SAS picks
optimal parallel algorithm and the concurrency setup, which
are then deployed on the target machine. For now we are
targeting only performance related parameters using SAS for
multicore setups, but additional parameters such as energy,
accuracy, resilience, security, and additional machine types,
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will be added in the future.

2) The Learner: In this paper, SAS is implemented using
the Multi-layer Perceptrons (MLP) based neural network [9],
as shown in Figure 5. MLP is well suited since it effectively
captures non-linear input dependencies and scalability patterns
in situational choices. Larger AI systems are also starting to
use MLP blocks as their central computational paradigms,
primarily due to its ability to be molded with respect to
the application, as well as scalability. Such machine learning
programs are also easily parallelizable, which is expected to
be helpful for problems involving larger complexity. Hardware
support for MLP-like systems is also showing promise, with
IBM’s Truenorth chip being an example. This is just one
prototype implementation for SAS, we expect to evaluate other
learning and even control-theoretic frameworks as future work.

MLP consists of multiple layers of neurons, each layer with
a finite number of neurons and associated sigmoid functions to
capture non-linear characteristics of the training inputs. Input
layer neurons represent varying inputs for a given algorithm,
such as core counts, available parallelization strategies, and
different input types. Output layer neurons represent parame-
ters, such as optimal parallelization strategy and thread count
for a given input configuration. There are also intermediate
layers, which perform the actual learning. The more layers
and neurons a network has, the better choice classification
accuracy is achieved, however with growing complexity.

The proposed MLP system uses four layers of neurons, with
each layer having 16 neurons, along with a final reduction step
that outputs the required parameters. Various MLP configura-
tions with different neurons per layer are tested, the results of
which are available in the evaluation section. It is found that
learning accuracy and classification performance saturates at
around 96% for the given neural network parameter setting.

IV. METHODOLOGY

Parallel graph analytic benchmarks are taken from the
CRONO suite [1], namely SSSP, PageRank, BFS, DFS,
and Community. CRONO allows interfacing these algorithms
with synthetic and real world graphs. Even though other graph
and data analytic workloads can be evaluated easily, we leave
them for future work due to space constraints. All bench-
marks are executed on a simulated 256-core multicore, as
described in Section III. Performance is measured as speedup

or slowdown by comparing the completion time at various
concurrency setups over the sequential version.

Random synthetic graphs are generated using a modified
version of the GTgraph generator [5]. All graphs use adja-
cency list representations. SAS is trained using synthetic input
graphs, and then evaluated using the sparse California Road
Network from the SNAP directory [19], and a Connectomics
graph [21] that is a dense map of neural connections within a
human brain. It is assumed that the programmer has little know
how about the underlying software and hardware architecture,
and makes several sub-optimal naive choices. We evaluate two
naive settings as baselines.
Naive Parallelization is an easy to program parallelization
strategy, similar to the one used in Parallel MiBench [15]. The
programmer chooses to exploit edge level parallelism, which
is easier to program as compared to vertex level parallelism
that requires dynamic scheduling of vertices for efficiency.
To keep this setting restricted to parallelization strategy, the
programmer uses thread count that gives best performance,
similar to SAS.
Naive Threads chooses an optimal parallelization strategy
but a sub-optimal thread count, as depicted in Fig 4. We
assume the programmer naively executes the program on the
maximum number of threads available on the target machine.

Next, we evaluate and compare SAS with the naive settings.

V. EVALUATION

Figure 6 shows the relative speedups for CRONO bench-
marks using the California road network [19], which is a
sparse input graph. Both naive parallelization and thread
choice strategies show limited scalability. However, SAS ob-
serves a speedup of 3.5× on average over naive parallelization
setting. In road network graph each vertex is connected to 1.5
vertices on average. Therefore, the edge level parallelization
strategy has limited work to be distributed per thread. Since
threads in graph benchmarks are synchronized often using
fine-grain communication, this leads to limited scalability due
to lack of exploitable parallelism. Vertex level parallelization
on the other hand opens up pareto fronts of multiple vertices
per iteration. This constitutes more parallel work that SAS is
able to exploit efficiently by picking the right parallelization
strategy. We also observe that even naive parallelization exe-
cuting at the optimal thread count cannot match the scalability
offered by the right parallelization strategy. However, SAS is
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Fig. 6. Speedups observed using SAS for the California Road Network.

able to learn and adapt this input dependence and achieve su-
perior scalability and performance. For the naive thread setting
comparison, we observe an average performance improvement
of 2× for SAS. This advantage is solely achieved due to the
optimal thread count choice. The main reason is that several of
the graph benchmarks (e.g., DFS and Community) scale up to
an intermediate thread count, and after that the communication
costs overwhelm the parallel computations. As a result the
communication and synchronization costs result in slowdowns
relative to the optimal thread count. Since SAS learns the
near-optimal thread count based on the input dependence, it
picks the right thread count and delivers better performance
compared to the native threads setting.

Figure 7 shows the relative speedups using Connectomics
brain graph, which is a dense input graph. The edge level
parallelization strategy works best for dense graphs since
they exhibit enough exploitable parallel work that can be
distributed among the threads. Therefore, we observe that
naive parallelization setting yields similar results as SAS. In
this graph input type, SAS improves performance by choosing
the optimal thread count. Due to disparities between optimal
thread count and naive threading, similar to Fig 3, performance
improvements for SAS are on average 30%. Moreover, dense
input graphs have more compute component than communi-
cation, so the overall results are less effective as the work
done per thread is already reasonable for all thread counts.
SSSP and Community show larger improvements than other
benchmarks because their communication costs augment at a
higher rate at high thread counts, which SAS is able to avoid
by scheduling them at lower than maximum threads.

Overall, SAS is able to adapt to input sensitivity by adjusting
the parallelization strategy and concurrency control, with mini-
mal complexity. This learning framework reduces programmer
level dependence by automating choices a programmer would
have otherwise deployed manually, for efficiency.

Learner accuracy is important since it defines the speedup
acquired over naive settings. The number of neurons per layer
are therefore varied, and speedups in contrast to an ideal
baseline are computed. Figure 8 shows the evaluation accuracy
of the learner, with respect to changes in the number of
neurons, where the accuracy saturates for larger number of
neurons. However, large space requirement increases memory,
computations, and overall complexity. It is therefore impera-
tive to manage trade-offs between classification accuracy and
acquired performance. In our implementation, we get ∼96%
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accuracy at 16 neurons, which provides plausible performance
for most applications.

VI. DISCUSSION

A. Improvements to the Scheduler Framework

Sensor-to-decision problems can be ported to various ma-
chine types, such as GPUs and IBM TrueNorth chips. The
proposed SAS prototype generates optimal parameters for a
large-scale simulated multicore setup. Under machine varia-
tions, our a priori assumption regarding machine information
and scalability is expected to help with optimal choice config-
urations. Training data for such setups can be generated and
applied to SAS to schedule applications.

B. Emerging Concurrency Control Methods

In the context of concurrency control, emerging communica-
tion acceleration primitives within architectures can be readily
applied to SAS. Prior works have shown that programming
models, such as pushing store data model [23], processing in
memory model [2], and conventional shared memory atomics
based model, all work well. However, the right choice of a
communication primitive depends on the algorithm, its input
type, as well as the machine’s concurrency architecture. SAS
can learn these choices and use a target programming model
that exploits communication scalability and efficiency.

C. Additional Computational Metrics

A possible future direction is to consider the implications of
security for cognitive computing. With continuously evolving
cyber-security threats it is almost impossible to protect ev-
erything in a computational system that requires performance



constraints. For example, cognitive applications leaking in-
formation can be made oblivious in software such that they
mitigate leakage of private data [20]. However, these oblivious
algorithms incur large performance overheads. SAS can utilize
oblivious libraries only when vulnerabilities increase under
certain situations. This will improve performance and help
cognitive systems such as UAVs to meet real-time guarantees.

Resilience is also an important metric for cognitive com-
puting. Soft errors can lead to disastrous consequences in
various cognitive applications, such as in a UAV flying at high
altitudes. However, just like security, soft errors do affect all
aspects of the application code equally, and thus cognitive ap-
plications can be selectively protected [26]. Resilient libraries,
alongside conventional algorithm libraries can be integrated
into SAS, which can select optimal algorithms based on the
overall system parameters, such as the location and altitude of
a UAV.

VII. CONCLUSION

Sensor-to-decision applications are becoming more and
more ubiquitous in our daily lives. However, such workloads
suffer from sub-optimal implementations, primarily due to
dynamic input changes. To circumvent this problem, we
present SAS, a situational scheduler that learns algorithm
implementation and architecture parameters using offline train-
ing input data and schedules optimal thread count and/or
parallelization strategy for a many-core system. We motivate
SAS using the single source shortest path (SSSP) problem,
which not only serves as a longstanding cognitive challenge
problem for graph analytics but is also ubiquitously used in
real world applications. We show that our situational scheduler
learns optimal choices and improves performance over naive
parallelization strategy and concurrency control. For sparse
input graphs, we observe 2–3.5× improvement. However, for
dense graph the naive strategies perform reasonably well. Even
in this case SAS improves performance by an average of 30%
over naive settings. These improvements show that SAS is a
plausible framework solution for cognitive applications.
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