
Exploiting Heterogeneous Parallel Accelerators to Improve
Performance in Graph Analytics

Masab Ahmad and Omer Khan
University of Connecticut, Storrs, CT, USA

{masab.ahmad, khan}@uconn.edu

ABSTRACT
With the ever-increasing amount of data and input variations,
portable performance is becoming harder to exploit on to-
day’s architectures. Computational setups generally utilize
single architecture types such as either GPUs or large scale
multicores for graph analytics. Disparities occur in perfor-
mance and energy when a target algorithm and input benefits
more from a different type of underlying parallel accelerator
architecture than the one being used. Some algorithm-input
combinations might perform more efficiently when utilizing
a GPUs higher concurrency and bandwidth, while others may
perform well using a multicore’s stronger single-threaded
performance and cache coherence hardware. This work aims
to bridge this disparity by proposing an adaptive scheduler
that learns these concurrency variations to select an optimal
underlying accelerator, as well as the correct parallelization
and concurrency choice within the accelerator architecture.
Results show that scheduling on an optimal machine using the
right concurrency choices provides significant performance
and energy benefits on a variety of architectures executing
graph analytics.

1. INTRODUCTION
Target applications utilizing graph, machine learning, and

database processing in various ways have risen rapidly over
the past decade. Their inputs are now processed in a plethora
of architectures, ranging from miniature field mobile ma-
chines [1], to humongous supercomputers [2]. However big-
data processing has almost never remained friendly towards
underlying architectures, as bottlenecks remain from synchro-
nization, memory access, and input dependent graph varia-
tions. Workload and input changes in such operational HPC
setups render performance overheads due to unpredictable
architectural variations.

However, big-data analytics can exploit such variations to
a certain degree if provided with heterogeneous computing
platforms [3]. Applications with little exploitable parallelism
such as certain path planning graph workloads (e.g. A*),
perform better on machine with better single threaded per-
formance (such as Intel’s Xeon Phi accelerators) [4]. On the
other hand, other path planning graph workloads such as the
Bellman-Ford algorithm with greater degrees of complexity
and work, can be highly parallelized on concurrent machines,
such as GPUs [5]. This disparity in choosing an optimal

Sparse Graph

USA-road-network

Dense Graph

Mouse-retina-Connectomic

Runs well 

on GPUs

Runs well on

Multicores

0

50

100

150

200

C
o

m
p

le
ti

o
n

 T
im

e

0

50

100

C
o

m
p

le
ti

o
n

 T
im

e

Figure 1: How input graph variations exhibit different
performance across machine setups. Example shown for
an optimized PageRank implementation running on an
Intel 7120P Xeon Phi and an Nvidia GTX-970 GPU. One
architecture does not optimize across both inputs.

underlying architecture leads to performance, energy, and
real-time bottlenecks in various computational paradigms
ranging from embedded platforms to datacenters [6].

To further solidify this disparity, an example is shown to
show performance variations across two different architec-
tures due to input changes. Figure 1 shows an OpenTuner-
optimized PageRank implementation running two different
input graphs on an Intel Xeon Phi 7120P multicore and an
Nvidia GTX-970 GPU. Sparse graphs have less connectivity,
and hence cause less stress on the memory subsystem [7].
Moreover as they require almost no synchronization, higher
concurrency can be exploited, which is plentifully available
on GPUs (which perform 50% better than the multicore in
this case). Dense graphs on the other hand have higher con-
nectivity between vertices that stresses the memory subsys-
tem, thus adding more requirements for synchronization and
single-threaded performance [8]. The Intel Xeon Phi multi-
core better exploits these characteristics, and performs ∼40%
better than the GPU counterpart. Thus, for the same algo-
rithm running two different input graphs causes performance
variations on a variety of architectures [9].

Taking the example of graph algorithms, they already pose
significant performance challenges due to the large amount
of choices that can be availed to execute algorithm-input
combinations [9, 10, 11]. This is further exacerbated by the

1



underlying architecture, where exploitable parallelism, syn-
chronization requirements, and memory access variations,
all add to execution complexity. Such variations, including
the example shown above, mainly stem from input graph
variations, where graph characteristics contribute to changes
in optimal algorithmic-architectural deployment [12].

Traditional computing models utilizing primarily unary ar-
chitecture types within a compute node (e.g. GPUs, or large
scale multicores such as Intel Xeon Phis), typically fail to pro-
vide ample performance and energy benefits [13, 14]. GPU
architectures have higher threading, weaker cache capacities,
and higher bandwidth, which allows for faster processing on
sparse graphs [15]. Large multicores, such as Intel Xeon Phis,
expose less threading, however they have larger and better
caching to exploit increased memory access and synchro-
nization requirements in dense graphs. This tradeoffs make
the case for having multiple parallel accelerator architectures
integrated in computational setups executing graph analytic
problems.

Future computational nodes are expected to have various
heterogeneity architectures tightly coupled and connected
via high speed interconnects. Prior works mainly involve
operating system related runtimes such as Rinnegan [16], to
improve resource utilization in single machine environments.
This work extends these works to justify how various architec-
tural and algorithmic choices and variations can be exploited
to improve performance, energy, and other parameters in
graph analytics. Challenges include 1) Efficiently learning to
schedule a target algorithm-input combination onto its opti-
mal architecture. 2) Heterogeneity across various algorithms,
inputs, and underlying architectures. 3) Evaluating queries in
a near real-time flow.

2. CONCURRENCY VARIATIONS IN HY-
BRID COMPUTATIONAL SETUPS

2.1 Architectural Variations within Parallel Ac-
celerators

Input dependence greatly leads to variations in perfor-
mance, stemming from the underlying architecture. This
has much to do with available concurrency within a parallel
accelerator. In terms of threading, this means that unique
inputs have unique threading characteristics, such as large
inputs performing well with increased threading. However,
this scalability depends on available memory, if more threads
request data from off-chip resources then memory access
penalties can cause performance losses. Such variations can
thus be looked at for various accelerators.

Threading capabilities are one of the many architectural
variations that can be exploited within an accelerator. For
example, in GPUs threading can be done on a massive scale.
Local threads in blocks and warps are scheduled for cores and
memory in a closer proximity. Similar analogy can be made
for multi-threading in multicores. Larger amounts of local
threads can exploit data reuse more efficiently, while smaller
amounts can reduce traffic on the already small local caches in
a GPU. More expansive global threading can exploit last-level
caches better, as well as more availability of cores. However,
it can also hinder synchronization and data movement costs
if a target application executes better with smaller and tightly

coupled threading.
Consequently all these architectural aspects add to choices

that need to be viewed as a whole to optimize for benchamrks
and inputs. A positive aspect of these set of choices is that
they are known at static time (e.g. DRAM size, cache capaci-
ties, and available core counts), which is useful in scheduling
within different accelerator machines [17].

2.2 Architectural Variations across Accelera-
tors

Until now we have explained how choices exist within
various machines. However, variations also occur across ma-
chines, such as in heterogeneous setups in use nowadays. E.g.
CPUs have become the central brains in a system, running the
OS and user support services, whereas GPUs are becoming
more and more suited for big data type processing. With
various accelerators in a given system, inputs and workloads
scale differently across different accelerator setups. The short-
est path problem described earlier performs better on GPUs
for certain inputs, and on multicores for other inputs. Such
choice exist for many other input–benchmark combinations
for graph analytics.

Choices primarily occur in threading, available memory
and memory bandwidth, and energy usage across acceler-
ators. Large scale multicores such as Intel Xeon Phi has
several tens of cores on-chip, with significant memory, mem-
ory bandwidth, and cache capacities. Moreover their stronger
floating point unit capabilities allow them to perform bet-
ter on workloads having floating point operations and larger
working set. GPUs on the other hand have smaller floating
point units and caches per core, and thus do not fare well for
such inputs and workloads. However, they do perform really
well on algorithms suitable for higher concurrency, i.e. more
threads.

2.3 Scheduling Issues in Multi-Machine setups
Due to large variations in accelerator architectures, vari-

ous issues arise when optimizing for near real-time schedul-
ing. One of these issues is the variation in bandwidth, to
local DDR memories within accelerators, as well as on the
PCI bus connections. Some accelerators may have higher
bandwidth, and thus may perform well on memory bound
applications. Available core and thread counts also induces
variations. Which accelerator should a particular input be ex-
ecuted on to achieve optimal performance? Accelerator cores
optimized for floating-point operations on a large scale are
expected to perform well on certain workloads with floating
precision requirements such as PageRank and Community
Detection. Thus, some problem-algorithm-implementation-
input combinations may scale well on one accelerator versus
another. Such choices need to be catered for in a scheduler
that addresses this issue. Learning is therefore required for
concurrency variations across accelerators.

3. EXPLOITING CONCURRENCY VARIA-
TIONS ACROSS MULTIPLE CONNECTED
ACCELERATORS

Due to input graph changes, variations in problem-algorithm-
implementation-input-machine combinations need to be ex-
ploited for performance or other objectives. The relationships

2



Offline Profiler

Samples from Synthetic 

Input Runs on 

various Accelerators

Architectural & Algorithmic 

Parameters

Performance Energy Data Latency

Accelerator 

Concurrency

Accelerator 

Memory Model

Input Graph Characteristics

Vertices, Edges, Diameter, 

Memory, Connectivity

Algos & Parallel 

Implementations

Real-time 

Constraints

Learning Paradigm

Central

CPU

Various Accelerators ModelsPerformance-Algo-Input

Memory – Energy

Machine

Profiler 

Database

Autotuned runs

using OpenTuner

Database LookUp

User Input Graphs

Sub-Graph Query

Deep Learning Model

Add New Query 

Data to Database

Deploy On 

Accelerator Setup

Model Run

on Central CPU

Spatial & Temporal

Distribution

of Resources

…

…

…

Transfer Time +

Scheduler Overhead

Figure 2: Scheduler Framework for Graph Analytics.

between algorithmic and architectural choices are already
known to be highly non-linear, and thus using an analytical
model or a linear equation system is undesirable. Many ob-
jectives therefore are required to be considered when creating
such a framework. We formulate this target framework as
a machine learning problem, with off-line learning require-
ments to exploit real-time opportunities. Figure 2 illustrates
this framework in detail. The framework considers several
architectural choices, which correspond to accelerator con-
currency, memory, and latency models. Some algorithmic
aspects are also considered, namely graph characteristics and
some algorithmic choices stemming from various paralleliza-
tion strategies for a chosen problem-algorithm combination.
Additional characteristics such as energy and latency aspects
are also considered.

The scheduler starts with a central machine learning paradigm,
utilizing offline learning, and online evaluations. Offline
learning is done on synthetic graph data, resembling how real
data would occur in an online input stream. Combinations are
created for various problem-algorithm-implementation-input-
machine, and their performance and additional objective re-
sults are stored in an off-line database. These performance re-
sults are highly optimized using auto-tuning (OpenTuner used
in this case), which create the database with completely opti-
mized results. A machine learning model uses the database
as training data to simply lookup something similar within
the synthetic results. This part of training creates the biases
and weights associated with the neural network learner.

Once the learner is fully trained, users can input real-world
graphs to the learner. The learner then looks at input graph
characteristics, such as size and sparsity, and determines
which machine to optimally deploy it on. As all input parame-
ters are coupled together, the optimal parameters (algorithmic
and architectural) within a given machine, are also selected
with the machine selection. The scheduler then deploys the
target tuple configuration on an optimal architectural setup.

4. METHODOLOGY
Graph workloads are taken from the CRONO [18], Ro-

dinia [3], and Pannotia [5] benchmark suites. Input graphs
are taken from various sources including the SNAP reposi-
tory. These graphs vary in sparsity and size, and take memory
ranging from a few MB to several 10s of GB.

Two primary machines are used to emulate a heterogeneous
multi-machine setup. A Xeon Phi 7120P multicore, having

SSSP BFS DFS PR-DP PR Tri.Cnt Comm CC

CA

FB

CO

LJ

Rgg

Frnd

Kron

Needs

Concurrency

Reduction +

Scaler Performance

Concurrency + Floating Point

Reduction Floating

Point

Indirect

Accesses

Sparse

Higher Diameter

Dense

Higher Diameter

Intermediate

Intermediately Dense

Random

Better on the GTX 750 GPU Better on the Xeon Phi

Graph Characteristics

Figure 3: Inter-Machine Dependencies for various com-
binations. Reasons for variations also shown.

61 cores, 244 threads, and large caches and memory, and a
GTX 750Ti GPU, that has 640 cores, and smaller caching
and memory compared to the Phi.

To train the learner framework, synthetic input graphs are
applied to the target algorithms and machines, which results
in a training dataset of various tuple combinations. Training
graphs are taken as uniform random [19], as well as Kro-
necker graphs [20]. These graphs model real-world graphs
with significant similarity, and are expected to be ample for
training. A 2.5ms overhead is added for the scheduler during
the evaluation phase when real graph inputs are executed with
various graph algorithms.

5. INITIAL RESULTS
To understand how different choices occur in multi-machine

setups, various benchmark-input combinations are evaluated.
Figure 3 shows how different input–benchmark combinations
perform differently across the two target machines (the GPU
and the Xeon Phi). Benchmarks with higher iteration require-
ments and longer outer loops, such as SSSP and BFS perform
well with GPUs due to higher available thread counts. On
the other hand, benchmarks such as Conn. Comp. (CC) and
Triangle Counting that require indirect memory access and
scalar computations perform well on the Xeon Phi. Input
dependence is also plentifully present. DFS-CO and PR-CO
perform well on the Phi, primarily due to inner loop paral-
lelization across the edges which the Xeon Phi can better
exploit because of larger local caches.

Figure 4 shows the results for all target graph benchmarks,

3



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

C
A F
B

C
O LJ

R
g

g

F
rn

d

K
ro

n

G
e

o
M

e
a

n

SSSP BFS DFS PR-DP PR Tri Cnt. Comm Conn Comp.

N
o

rm
a

li
ze

d
 C

o
m

p
le

ti
o

n
 T

im
e

Xeon Phi GTX 750Ti SAS

SSSP BFS DFS PR-DP PR Tri Cnt. Comm Conn Comp.

245 57 109 61 6.6 3.6 2 76 60 2.1 54 19 22 5 2.7 2.3 2.5 4.7 3.5

Figure 4: Scheduler Comparisons for various Graph Workloads.

and results are normalized with respect to the GPU comple-
tion time of each input–benchmark combination. Overall it
can be seen that one machine does not perform well for all
benchmarks. Benchmarks such as SSSP and BFS that have
dependencies across iterations and require more parallelism
fare better on the GPU. Other workloads, such as Community
and PageRank perform better on the Xeon Phi due to more
floating point requirements. Overall, the proposed learner
schedules the optimal architectural choices within and across
machines, which results in a average of 32% improvement
over a GPU-only implementation, and a 58% improvement
over a Phi-only implementation.

6. CONCLUSION
This paper shows that choices exist in graph applications

within and across many-core machine implementations. This
is because input-sensitivity in graph benchmarks leads to
performance bottlenecks due to concurrency variations. How-
ever, the right selection of these architectural choices can
be done in a near real-time setting that leads to a significant
improvement in performance.

7. REFERENCES
[1] S. Iqbal, Y. Liang, and H. Grahn, “Parmibench - an open-source

benchmark for embedded multiprocessor systems,” Computer
Architecture Letters, vol. 9, no. 2, pp. 45–48, Feb 2010.

[2] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer,
M. Smelyanskiy, M. Girkar, and P. Dubey, “Can traditional
programming bridge the ninja performance gap for parallel computing
applications?” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 440–451.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, Oct 2009, pp. 44–54.

[4] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“Unlocking ordered parallelism with the swarm architecture,” IEEE
Micro, vol. 36, no. 3, pp. 105–117, May 2016.

[5] S. Che, B. Beckmann, S. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in IEEE Int.
Symph. on Workload Characterization (IISWC), Sept 2013.

[6] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of
graph analytics frameworks using massive graph datasets,” in Proc. of
the 2014 ACM SIG. Int. Conf. on Management of Data (SIGMOD).
NY, USA: ACM, 2014.

[7] J. Leskovec and et al, “Community structure in large networks:
Natural cluster sizes and the absence of large well-defined clusters,”
2008.

[8] J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of
connectomics,” in Nature Neuroscience 17, Sept 2014.

[9] M. Ahmad and O. Khan, “Gpu concurrency choices in graph
analytics,” in 2016 IEEE International Symposium on Workload
Characterization (IISWC), Sept 2016, pp. 1–10.

[10] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation,
ser. PACT ’14. New York, NY, USA: ACM, 2014, pp. 303–316.

[11] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe, “Petabricks: A language and compiler for
algorithmic choice,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’09. New York, NY, USA: ACM, 2009, pp. 38–49.

[12] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,”
in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2015.
New York, NY, USA: ACM, 2015, pp. 379–390.

[13] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on gpus,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: ACM, 2015, pp. 528–540.

[14] W. Li, G. Jin, X. Cui, and S. See, “An evaluation of unified memory
technology on nvidia gpus,” in Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM Int. Symph. on, May 2015.

[15] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus:
Where are the bottlenecks?” in Workload Characterization (IISWC),
2014 IEEE International Symposium on, Oct 2014, pp. 140–149.

[16] S. Panneerselvam and M. Swift, “Rinnegan: Efficient resource use in
heterogeneous architectures,” in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, ser. PACT ’16.
New York, NY, USA: ACM, 2016, pp. 373–386.

[17] M. Ahmad, C. J. Michael, and O. Khan, “Efficient situational
scheduling of graph workloads on single-chip multicores and gpus,”
IEEE Micro, vol. 37, no. 1, pp. 30–40, Jan 2017.

[18] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono : A benchmark
suite for multithreaded graph algorithms executing on futuristic
multicores,” in Proc. of IEEE Int. Symposium on Workload
Characterization, ser. IISWC, 2015.

[19] D. A. Bader and K. Madduri, “Gtgraph: A synthetic graph generator
suite,” 2006.

[20] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling

networks,” J. Mach. Learn. Res., vol. 11, pp. 985–1042, Mar. 2010.

4


	Introduction
	Concurrency Variations in Hybrid Computational Setups
	Architectural Variations within Parallel Accelerators
	Architectural Variations across Accelerators
	Scheduling Issues in Multi-Machine setups

	Exploiting Concurrency Variations across Multiple Connected Accelerators
	Methodology
	Initial Results
	Conclusion
	References

